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ABSTRACT: The development of a probabilistic modeling framework to conduct a priori simulations (forecasts)
of the concentration of total ammonia (T-NH,) and stattls with respect to toxicity standards and criteria is
documented for ammonia-polluted Onondaga.Lake. Syracuse. N.Y. This framework utilizes a previously tested
mass balance ni~gen model. long-term (27 year) simulations. and die Monte Carlo technique. Variability is
accommodated. based on long-term reccxds. for several parameters and forcing conditions, including (I) tributary
runoff, (2) in-lake vertical mixing, (3) in-lake rate of nitrification. (4) T-NH, concentration in the effluent of a
wastewater-treatment plant, (5) lake pH. and (6) lake temperature. The probabilistic framework perfonned well
in simulating the broad variations in T-NH, concentrations observed in the lake over a 6-year period (1989-
1994). The major SOUICeS of the observed interannual variability in the lake's T-NH, pool are demonstrated to
be natural variations in runoff and the irregular occurrence of "nitrification events" during fall mixing. Predic-
tions are presented in the form of frequency distributions of T-NH, concentrations and violationslexceedances
of the standard/criterion, consistent with the format of U.S. Environmental Protection Agency toxicity criteria.
Application of the probabilistic model is recommeDded for the total maximum daily load analysis that will
establish the T-NH) limit for the wastewater-treatment plant effluent.

INTRODUCTION

Mathematical models have become integral components of
water quality research and management programs. Models
with demonstrated credibility are necessary to meet critical
societal needs to provide predictive capabilities to guide the
evaluation of rehabilitation alternatives for impacted systems
(Thomann and Mueller 1987; Chapra 1997). Water quality
managers often need to predict the ecosystem response to such
possible future scenarios as increased levels of waste treat-
ment. Such forecasts are described as a priori (Bierman and
Dolan 1986) simulations. These projections require not only
reliable mode] frameworks that can support predictions over a
wide range of alternatives. but also appropriate specification
of important inputs of mediating conditions, including their
inherent variability. An important and timely example is the
central role a priori mode] simulations play in the total max-
imum daily load (TMDL) process that establishes load (point
and nonpoint) allocations (kg' d-l) for pollutants/toxicants
necessary to meet standards in "water quality limited" surface
waters (EPA ]99]a).

A number of important model inplts vary substantially.
Point source inputs are rarely uniform in time, but instead may
be subject to variation associated with manufacturing and plant
operation cycles and influent characteristics. The appropriate
specification of such ecosystem forcing data as meteorology,
runoff, and other ambient conditions can be even more prob-
]ematic. These drivers demonstrate wide variations in many
regions that can strongly modify measures of water quality
(Effier et al' 1986; Lam et al. 1987; Auer and Effler ]989;
Owens et aI. 1998). Variations in meteorological and runoff
conditions are best specified by long-term records (for exam-
ple, Owens et al. 1998), rather than synthetic CIeations.

Precedents ex.ist to specify forcing conditions accepted as
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critical by managers for certain model state variable/ecosystem
situations. For example, the specification of low ftow and high
temperature conditions for evaluation of the assimilative ca-
pacity of streams and rivers for oxygen-demanding discharges
(Thomann and Mueller 1987). Selection of appropriate critical
conditions, however, becomes more difficult as complexity in-
creases, such as in lakes and reservoirs. Long-term records of
meteorology, nmoff, and related in-lake conditions provide 0p-
portunities to represent the effects of natural variations in these
important forcing conditions in a priori model simulations (for
example, Effler and Owens 1986; Owens and Effler 1989).
Simulations for such long-term records with tested models can
be analy:z.ed to predict the expected variability of water quality,
in response to natural variations in forcing conditions. Statis-
tical analyses of simulation output and distributions formed hi
the predictions can provide a summary of environmental var-
iability, d1ereby providing an objective basis for setting man-
agement goals (for example, Canale and Effler 1989; Owens
et al. 1998).

Ammonia is aD important water quality constituent, partic-
ularly in systems that receive discharges from domestic waste-
water-treabnent plants (WWTPs), because this constituent (I)
is the preferred form of nitrogen (N) to support phytoplankton
growth (Wetzel 1983; Harris 1986); (2) can contribute to the
depletion of dissolved oxygen (DO) through dlC nitrification
process (Hall 1986; Gelda et al. 2(XX»; and (3) can be toxic
to aquatic life in rather low concentrations (EPA 1985; 1999).

The focus of this work is the potential toxicity of ammonia
in aquatic systems. This issue has received substantial attention
from the EPA in recent years, as demonstrated by dlC five
revisions of the national ammonia toxicity criteria over the last
15 years (EPA 1985; 1996; 1998; 1999; Heber and Ballentine
1992). Changes in the criteria have recently been reviewed by
Matthews et al. (2000). The behavior of ammonia in aquatic
systems can be rather complex, as several biochemical pr0-
cesses, influenced by various ambient environmental condi-
tions, affect the pool of this constituent (Thomann and Mueller
1987; Canale et al. 1996; Chapra 1997).

The most widely used analytical techniques for detemJining
ammonia measure total ammonia (T-NHJ). This analyte is
composed of two chemical fonDS: free (or un-ionized) am-
monia (NHJ) and ammonium ion (NH:). The distribution be-
tween these two forms, usually detennined by equilibrium cal-
t.-ulations, is regulated primarily by pH, secondarily by
temperature (T) (Emerson et aI. 1975), and, to a lesser extent,
by ionic strength (Messer et al. 1984). The equilibrium shifts
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toward greater contributions of NH3 (to T-NH3) as pH and T
increase. Free ammonia is much more toxic to aquatic life than
~ (EPA 1985; 1998). The earlier criteria to protect against
toxic effects [for example, Heber and Ballentine (1992); EPA
(1985); (1996») were expressed primarily in terms of NH3, as
a function of pH and T. Recent criteria (EPA 1998; 1999) are
expressed in terms of T-NH3.

This paper reports on the development of a probabilistic
modeling framework to support a priori simulations of T-NH3
concentrations and status with respect to the state standard and
national chronic toxicity criterion [for example, EPA (1985);
(1999») for lakes. This framework (1) adopts a previously
tested mechanistic model for N (Canale et al. 1996); (2) uti-
lizes lake and tributary measurements made as part of a long-
term monitoring program for an urban lake polluted with
T-NH3 (Onondaga Lake, N.Y.) (Effler 1996; Matthews et al.
2000); and (3) accommodates the influences of natural varia-
tions in meteorology, as manifested in tributary runoff and in-
lake mixing, ambient pH and T, in-lake kinetic processes, and
loads from a WWTP.

Predictions are presented in the form of frequency distri-
butions of T -NH3 concentrations and violationslexceedances of
the standard/criterion. Predicted seasonal variations in T-NH3
concentrations are compared to variations observed over a
6-year period. This framework is applied to evaluate the rel-
ative importance and character of sources of interannual var-
iability in the T-NH3 pool of the lake. Simulations are pre-
sented for both prevailing conditions and for a WWfP
discharge management scenario. The framework is appropriate
to support a TMDL analysis [for example, EPA (1991a») for
ammonia for the lake. The utility of the framework and the
underlying strategy for supporting related management delib-
erations and actions is considered.

SYSTEM DESCRIPTION

Onondaga Lake is located in metropolitan Syracuse, N.Y.
This dimictic lake has a surface area of 12 kmz, a mean depth
of 10.9 m, and a maximum depth of 19.5 m (Fig. 1). The
lake's single outflow enters the Seneca River (Fig. 1). The lake
was oligo-mesotropbic before European settlement in the late
1700s (Rowell 1996) and supported a commercially viable
cold-water fishery until the late 1800s (Tango and Ringler
1996). Onondaga Lake has received the domestic waste and
much of the industrial waste generated widlin its watershed
(642 kmz) since development of the region (Effler and Hamett
1996; Effler and Hennigan 1996). The resulting degradations
of the lake el~ted uses of the resource by the community.
Ice harvesting was banned in 1901, swimming in 1940, and

fishing in 1970 (Effler and Harnett 1996). The lake's water-
shed presently has a population of -450,000.

Treated municipal waste is discharged to the southern end
of the lake (fig. 1) from the Metropolitan Syracuse Waste-
water Treatment Plant (METRO). METRO is the dominant
source of N and phosphorus (P) to the lake, presently repre-
senting about 80, 90, and 60% of the total annual external
loads of total N, T-NHJ, and P, respectively (Effler et at.
1996a). The prevailing annual area1loads of P (-8 g.m-2.
y-1) and N (-200 g.m-2.y-1) (Effler et at. 1996a) are among
the highest reported in the literature (Brezonik 1972; Stauffer
1985). Though METRO was not intended to attain significant
ammonia treatment. substantial nitrification bas been achieved
during the warmer summer months within the facility since
~e mid-1980s (Effler et at. 1996a). This causes seasonal shifts
in the contributions of T -NHJ and oxidized forms of N [nitrate
(NO;) and nitrite (ND;); sum of NO:; and NO:; = NOx] to
the facility's N load. Major interannual differences in the ex-
tent of nitrification have been common at the facility (Effler
et at. 1996a; Gelda et at. 1999).

Onondaga Lake is extremely eutrophic because of the
METRO P load and suffers from related degradations in clarity
and oxygen resources (Effler et at. 1996a). Inputs of T-NHJ
from METRO caused (Brooks and Effler 1990; Canale et at.
1996) violations of the state standard and exceedances of na-
tional ammonia criteria (chronic and acute) in the upper waters
of the lake annually during the 1989-1998 interval (Matthews
et at. 2000). These violations and exceedances were severe
with respect to their margin (ratio of measured concentration
to standard or criterion value; ratio > 1.0 is a violation or ex-
ceedance) and duration. Margins of violation/exceedance have
been greatest over the spring to midsummer interval (Mat-
thews et at. 2000). Concentrations of T-NHJ > 2 mgN' L -I
have been common in the upper waters, and maxima of -4
mgN . L -I have been observed in these layers (Matthews et at.
2(xx). Substantial year-to-year differences in temporal patterns
have been reported for the upper waters, particularly with the
approach to fall turnover (Matthews et at. 2000).

The differences during fall mixing have been attributed
largely to interannual variations in nitrification in the lake
(Gelda et at. 2000). Differences during summer have been as-
sociated with interannual variations in the extent of nitrifica-
tion at METRO and the timing and magnitude of phytoplank-
ton growth (Matthews et at. 2000). Ammonia concentrations
increase progressively in the hypolimnion, particularly after
the onset of anoxia. largely in response to release from the
sediments (Effler 1996; Wickman 1996). The peak volume-
weighted hypolimnetic T-NHJ concentration observed an-
nually, before the onset of fall mixing, bas been 4 to 5 mgN'
L -1 (Effter 1996). Violations of the chronic ammonia standard
occur in these lower layers, but the margins are generally
smaller than for the epilimnion because pH is lower in the
hypolimnion (Effter et at. 1990). Anoxia is the primary re-
source-limiting condition for Onondaga Lake's hypolimnion.
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MODELING

Framework/Strategy

A probabilistic modeling framework was developed to sim-
ulate T-NH] concentrations and status with respect to the tox-
icity standard/criterion. A mechanistic mass balance model for
nitrogen (N) was used with probabilistic fonDS of inputs to
generate probabilistic predictions of T-NH]. The probabilistic
framework accommodates the following sources of variability

\ .,J in support of the a priori simulations: (1) nmoff, (2) vertical
'- mixing, (3) in,.lake nitrification, (4) METRO T-NH, load (that

FIG. 1. Onondaga LW; Bad1ymetty (contours in meters), Tnoutaries. is, nitrification in the facility), (5) lake pH. and (6) lake tem-
Wastewater T~ Plant (METRO), and Sampling Sites perature. The strategy was to combine distributions of simu-
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2. flows
8. tributary, aT
b. METRO, ~

3. concentrations
8. tributary, CN. T

---~._~-~_~~9_N~~
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distributions)

counts of
Iexceedances

I VI' vertical mixing
a. obs., 1989-94
b. average Key:- CCC = continuous chronic criterion M = margin of exceedance

CN,L = predicted T -NH3 conc in lake au = flow of METRO
CN,M = T -NH3 conc in METRO aT = flow of tributaries
CN, T = T -NH3 conc in tributary T = in-lake temperature
~ = nitrification rate coefficient Vt = vertical mixing coefficient

0 Monte Carlo variables Loads = Flows x Concentrations

FIG. 2. Probabilistic Modeling Framework for Simulations of Total Ammonia (T-NH,), and Status with Respect to Chronic Ammonia Criterion, for

Onondaga Lake

lated T-NH3 concentrations and values of the standard/criterion
to predict dte status of the upper waters of the lake with respect
to the toxicity limits (Fig. 2) for the critical interVal (Matthews
et al. 2000) of April-October. Features of the long-temt mon-
itoring program for the lake and its tributaries Sl!pporting this
analysis have been described elsewhere [for example, Brooks
and Effler (1990); Effler (1996); Matthews et al. (2000)]. In
Fig. 2, Group I specifies inputs to the N model; Group 2
depicts the components of the N model that relate to the inputs
from Group I; and Group 3 depicts the protocol for probabi-
listic calculations of the margin of exceedance of the CCC.

The T-NH3 predictions incorporate sources of variability in
two ways. The first may be described as a long-term contin-
uous simulation approach [for example, EPA (199lb)]. Long-
tenD data sets for tributary flow and vertical mixing are used
to drive multiple-year simulations to quantify the variability
caused by natural variations in these forcing conditions (Fig.
2). Changes in material loading from the tributaries associated
with variations in flow are calculated based on prevailing flow!
concentration relationships (Fig. 2). According to this ap-
proach, model simulations are driven with an entire long-tenD
record of real observations rather than with an arbitrarily se-
lected subset of measurements that may be believed to be
"critical" (Chapra 1997; Owens et al. 1998).

The long-tenD continuous simulation approach has a num-
ber of attributes: (I) the specified forcing conditions are in-
herently representative within the region of measurement; (2)
distributions of predictions of model state variables are gen-
erated from the simulations, which represent the effects of nat-
ural variations in these ecosystem drivers; (3) critical forcing
conditions (associated with certain return frequency occur-
rences specified by managers) can be objectively identified
within the long-tenD record. based on the results of dte sim-
ulations (Canale and Effler 1989); and (4) insights into system
and constituent behavior may emerge from analysis of such
long-tenD simulations (Owens and Effler 1989). Such simu-
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lations have been conducted in several instances (EfOer and
Owens 1986; Owens and Effler 1989; Stefan et al. 1993;
Owens et al. 1998) to resolve the relative impacts of natural
meteorological variability versus anthropogenic effects on the
stratification regime and water quality.

The second probabilistic approach is Monte Carlo simula-
tions. used here to accommodate the effects of interannual sto-
chastic variations in nitrification in the lake (Gelda et al. 2000)
and in METRO on lake T-NH) concenb"ations. and to calculate
the criterion or standard from distributions of pH and T based
on long-term measurements for the upper layers of the lake
(Fig. 2). This approach is useful where long-term data are not
available to represent uncertainty/variability explicitly. The
necessary probability distnoutions are specified from the p0p-
ulation of independent estimates of the rate of in-lake nitrifi-
cation (kN. 01) (Gelda et al. 2<XX». our review of the inter-
annual variations in effluent characteristics of METRO [for
example. EfOer et al. 1996(b)]. and long-term measurements
of pH and T (EfOer 1996; Matthews et al. 2<XX». Accordingly.
values of each of four Monte Carlo variables (Fig. 2) are ran-
domly selected for each day of simulation from the specified
distnoutions. These populations were found to be essentially
independent of each other. with the time segmentation scheme
adopted in tl1is framework (described subsequently). Probabi-
listic simulations of T-NH) concenb"ations are produced daily,
according to this modeling Sb"ategy (Fig. 2).

Values of the existing New York State standard for T-NH)
to protect against chronic effects are calculated for each day
of simulation of T-NH, concenb"ation from the specified dis-
tributions of pH and T (Fig. 2). These correspond to the values
of the national continuous chronic criterion (CCC) established
for nonsalmonid systems in a guidance document prepared by
EPA (1985). Values are calculated for the months April-Oc-
tober. the interval for which the potential for ammonia toxicity
is greatest (Mattllews et al. 2000), and for which the most
comprehensive field measurements are available (EfOu 1996).
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Margins of violation are calculated for each day in the April-
October interval from paired distributions of predictions of
T-NH3 and CCC (Fig. 2). Status with respect to more recent
EPA guidance criteria [for example, EPA (1998; 1999)] can be
readily detennined through calculation of the alternate CCC
values from the same distributions of pH and T.

Effects of Meteorological, Treatment, and
Biochemical Variability

,)

Runoff

The hydrology of Onondaga Lake has been well quantified.
Approximately 90% of the surface inflow has been continu-
ously gauged since the early 1970s (Effler and Whitehead
1996); a 27-year record is utilized here. Direct groundwaterDescription of N Model
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The mechanistic N model developed specifically for On-
ondaga Lake (Canale et al. 1996) bas been incorporated in the
probabilistic framework (Fig. 2). This mass balance model
(Canale et at. 1996) represents the lake's water column as two
completely mixed vertical layers of fixed dimensions (demar-
cation depth of 8.5 m), an upper mixed layer (UML) and lower
mixed layer (LML), corresponding approximately to the di-
mensions of the epilimnion in summer (Effier 19.96). This sim-
ple vertical segmentation has been widely used in mass bal-
ance simulation models for s~g lakes (Thomann and
Mueller 1987; Cbapra 1997). The two model layers are con-
nected by vertical mixing-based exchange.

The model (Fig. 3) simulates concentrations of T-NH3 , NO.,
particulate organic N (PON), and dissolved organic N (DON).
Pathways in the lake's N cycle (Fig. 3) included in the model
are external loading, export from the basin. net phytoplankton
growth. nitrification, denitrification. hydrolysis of DON to
T-NH3. decomposition ofPON. volatilization of free ammonia.
sediment release of T-NH3. settling of PON, and vertical mix-
ing-based exchange between the UML and LML (Canale et al.
1996). The energetically favored preferential uptake of
T-NH3. instead of NO.: by phytoplankton (Wetzel 1983) is
accommodated. Kinetic representation of the processes and
mass balance expressions for this model were presented by
Canale et al. (1996). The model design has similarities to ear-
lier N models (for example. state variables. N cycle pathways)
(Canale et al. 1976; DiToro and Connolly 1980). Model de-
velopment and testing were supported by the independent de-
termination of several model coefficients based on field and
laboratory experiments (Canale et al. 1996). The model was
originally tested for the different forcing conditions and in-
lake concentration patterns documented for 1989 and 1990
(Canale et al. 1996). Testing and application of the model were
subsequently extended (Gelda et al. 2000; Effler et al. 2001).
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AG. 4. Seasonal and Interannual Variations ..
Total Ammonia (T-NH,) Concentrations. and Status with Respect
Chronic Ammonia Criterion. for Onondaga Lake
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cuned over the July-October interval of 1989 (Effler et aI.
1996), while high T-NH) concentrations persisted in the efflu-
ent throughout 1993 (unpublished data). These two time series
were considered equally likely (that is, 50% probability) under
existing conditions. The single management scenario ad-
dressed here assumes a SO% reduction in concentrations in
each month of these two time series.

inputs to the lake basin are insignificant (Effier and Whitehead
1996). The largest sources of water annually to the lake are
Ninemile Creek and Onondaga Creek (Fig. 1), which together
conbibute -60% of the inflow.

These two bibutaries and two other fluvial inftows have
U.S. Geological Survey gauges near their mouths (Fig. 1). Dis-
creet measurements of flow in the ungauged bibutaries (-1 ~
of total inflow) were found to be well correlated to gauged
flows (Effier and Whitehead 1996); summed bibutary flows
were multiplied by 0.116 to estimate the ungauged inflow in
the analyses presented here. Hydrologic fluxes associated with
direct precipitation and evaporation at the lake's surface are
approximately in balance on an annual basis and small relative
to the summed rate of surface inflow (Effier and Whitehead
1996), and thus have not been considered ~. The surface
elevation of the lake remains relatively constant; that is, the
sum of surface inflows equals the outflow.

Major seasonal and interannual variations occur in hydro-
logic loading to Onondaga Lake [Fig. 4(a)] that ale observed
widely for other lakes. Tributary flows (based on USGS Ie(:-
o~) are greatest in March and April and lowest in the July-
September interval. Interannual variations in runoff ale partic-
ularly great in spring (Fig. 4(a)]. The lake flushes rapidly, with
an average (1971-1997) completely mixed flushing rate of 4.0
flusbes.y-' (range of 2.4-6.2 flushes.y-1. The lake flushed
on average 1.1 times during March and April over this 27-
year interval

METRO is the third largest source of water (average flow
-3.5 m3's-1 to Onondaga Lake, representing nearly 20% of
the total inflow on an annual basis; this discharge is often the
single largest inflow in late summer (Effler and Whitehead
1996). The average seasonality of this inflow (Fig. 4(b)] re-
flects the temporal pattern of runoff in the watenbed (based
on facility permit reports) (Fig. 4(a)], as mediated through the
community's combined sewer system. The relative magnitude
of seasonal and interannual variations in the METRO flow is,
however, substantially less than for the bibutaries.

Vertical Mixing

Meteorological conditions can further influence features of
water quality by regulating the stratification/mixing regime of
lakes (Effler et al. 1986; Lam et al. 1987; Owens and Effler
1989). Interannual variations in features of stratification. such
as vertical mixing, duration of stratification and temperature
of the layers, occur in Onondaga Lake as a result of natural
variations in meteorology (Owens and Effter 1989; Effler and
Owens 1996). An aspect of this variability is repescnted here
by time series of the vertical mixing coefficient (v,; m' d -I)
[Fig. 4(d)I], detennined by applying a heat balance to the
LML. according to the protocol of Doerr et al. (1996). The N
model uses v, and the concentration gradient between the Uhon.
and LML to calculate d1e upward flux from the enriched Iowa:
layers to the upper waters (Canale et al. 1996). A l(}.year
record of weekly T profiles collected over the April-October
interval for the 1988-1997 period. at a site (Fig. 1) found to
be felX'e5entative of lakewide conditions (Effler 1996; EffIa:
and Owens 1996), supported determinations of v,.

Certain seasonality features observed here [Fig. '4(d)] are
recurring and widely observed for north temperate lakes [for
example, Thomann and Mueller (1987); Chapra (1997)]. Min-
imal vertical mixing occun'ed in midsummer when stratifica-
tion was strongest, while v, was higher in spring and fall when
stratification was weaker [Fig. 4(d)]. A value of v, = 5 m. d-'
was applied (Doerr et aI. 1996) from late fall to late winter
(Fig. 4(d)]. This high value essentially converts the two-layer
framework to a one-laya: (that is. vertically well mixed) sys-
tem over this interval (Doerr et aI. 1996).

In-Lake Nitrification

Some level of. uncertainty is unavoidable for the model's
representation of each of the biochemical source and sink pr0-
cesses for T-NH] and tile determination of related coefficient
values (Canale et al 1996). Only tile effects of variability!
uncertainty in nitrification (kN) are considered here (Fig. 2)
because the T-NH] pool of the lake, and model simulations of
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Material Loads

Loads of T-NH) and organic N are required to drive the
model (Fig. 3). The tributary loads are generated as the product
of daily average tributary flows and concentrations for the en-
tire V-year flow record (Fig. 2). The concenb'ations are 0b-
tained from flow-concenttation relationships determined for
the various tributaries that are representative of prevailing con-
ditions (Effler and Whitehead 1996). A dilution Dk)del rela-
tionship (concenb'ation increases with decreases in Bow) [fm-
example, Effter et al. (1996b); Johnson (1979); MaIM:zak and
Florczyk (1971)] prevails between T-NH) concentration and
stream flow at the mouth of Ninemile Cleek, associated with
residual inputs from soda ash production (Effter et al. 1991).
Concenb'ations have been observed to be generally indepen-
dent of flow in the odler tributaries (Effter and Whitehead
1996). While some uncertainty in the tributary l~ accom-
panies these representations. this has no significant effect on
predictions for Onondaga Lake, ~~use these nODIK>int inputs
remain minor compared to those from METRO. It may be
necessary to accommodate these SO\m:eS of uncertainty in the
probabilistic framework for systems where non point inputs are
more imponanL

T~ series of METRO effluent T-NH3 concentrations were
formed for two 12-month intervals, each with segments of 1 I
month (that is, monthly average concentrations), based on . . . . , . . . . I . . . . , . . .', . . . .
analysis of7 consecutive years (1989-1995) of data (5 days 0.00 0.05 0.10 0.15 0.20
per week. on volume-weighted samples. reported as part of ,
~t requirements) [Fig. 4(c)]. The cooditions observed in 2 Nibl;'~, Rate Constant (d" )

years. 1989 and 1993, were selected as representative of the FIG. 5. Dis1ribubons of Nitrification Rate CoaItaDt (ktt) in o.x-.p
variation in effluent conditions. Substantial nitrification oc- Lake for ~ 'nIne Segments
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this constituent. are by far the most sensitive to the variations
observed in this process (Gelda et al. 2000).

Gelda et al. (2000) documented the irregular occurrence of
"nitrification events" (abrupt increase) in 3 of the 7 years with
the approach to fall turnover (mid-September through Octo-
ber). The value of kN remained near zero during this interval
in the other 4 years. That analysis was extended here to esti-
mate kN values for the April-July interval of the same years
to support this modeling effort. The value of kN was found to
be close to zero over the April to mid-June interval of all 7
years (Gelda et al. 1999). Distributions of kN were established
for three time segments, mid-June to mid-September [Fig.
5(a)], mid-September to the end of September [Fig. 5(b)] and
October [Fig. 5(a-c)]. A uniform distribution was established
for the first segment for a comparatively small range of low
values of kN [Fig. 5(a)]. Bimodal distributions were established
for the later two segments [Fig. 5(b and c)] to represent the
eventlike character encountered for the lake during the fall
mixing period (Gelda et al. 2000). The value of kN was as-
sumed to equal zero for the interval of November-March be-
cause of the well-known dependency of nitrification on tem-
perature [for example, Thomann and Mueller (1987); Canale
et al. (1996)]. This assumption is further supported by ~e
successful simulation of T-NH) concentrations at spring turn-
over with kN set to zero, from initial conditions established at
the preceding fall turnover (Effler et al. 2001).

.

T-NH) concentrations was selected for each iteration. Values
of kN were drawn randomly according to the specified distri-
butions (Fig. 5) for each year of simulations. The mid- to end
of September and October selections were coupled; that is, if
a high value was drawn for the September interval, then a high
value was drawn for October (Gelda et al. 2000). A total of
2,700 predictions were made for each day of the year, accord-
ing to the framework adopted here, to reflect prevailing con-
ditions and evaluate the hypothetical management scenario
[for example, Figs. 2 and 6(e)].

Monthly distributions of lake T-NH) predictions, presented
subsequently to summarize selected features of the simula-
tions, were based on -81,000 (2,700 X 30) daily simulations.
Increases in the number of iterations (n > 100) for Monte Carlo
simulations did not significantly change the results. Reduction
of the iterations to 10 (that is, 270 predictions for each day)
decreased the predicted coefficient of variation (CV) by about
8% on an annual basis. Values of CCC were computed for
each day of simulations for each of the Monte Carlo iterations
from values of pH and T drawn randomly from their respective
distributions. The margin of violation was calculated for each
pair of simulated T-NH) concentration and calculated CCC
values. Daily distributions of the margin were available, but
these conditions are summarized here in monthly segments.

APPLICATION OF MODELING FRAMEWORK

Simulations of T-NHa

.I

~~

i

Specification of pH and T

A to-year (1989-1998) database of weekly pH and T pro-
files (Matthews et al. 2000) collected over the April-October
interval at the representative site (Fig. I) was used to specify
the distributions of these parameters for the UML (Fig. 2). The
single pH and T values adopted from each profile (I m interval
of measurements) for this analysis were the averages over the
0 to 4 m depth interval (pH from average [H+]) (Matthews et
al. 2(xx». Further deepening of the depth interval of averaging
resulted in values for certain intervals that were not protective
of substantial portions of the epilimnion (Effler 1996). Ac-
cording to this protocol, approximately 40 observations were
available to define the prevailing distributions of pH within
the upper waters of Onondaga Lake for each month over the
April-October interval. Values of pH remain well above neu-
tral in the epilimnion of this alkaline lake [Fig. 4(e)]. No sys-
tematic shifts in pH have occurred during the 10-year period
(Matthews et al. 2000). On average, pH has been rather uni-
form over the April-August interval [Fig. 4(e)]. Depression in
pH has occurred annually in the UML during the fall mixing
period [Fig. 4(e)] in response to entrainment of C~ and var-
ious reduced species (Driscoll et al. 1994; Effler 1996). The
substantial interannual differences observed in short-term tem-
poral structure (for example, Matthews et al. 2000) support the
monthly time segmentation adopted for pH.

The recurring seasonality of the T of the upper waters was
represented by a polynomial fit of the 10 years of observations
[Fig. 4(f)]. This relationship was used to specify the mean of
a normally distributed population for each day over the April-
October. The bounds of the daily distributions were established
by assuming the 95% confidence limits of the polynomial fit
[Fig. 4(f)] are equal to ::t2 standard deviations.

Modeling Protocol

Initial conditions were specified on the first day of simula-
tions as historic averages of the first observations in April. One
hundred iterations were performed for the entire specified 27-
year interval, resulting in 2.700 distinct predictions for each
day, or 81,000 distinct ~ctions for each month. Accord-
ingly, one of the two alternate METRO effluent time series of
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Prevailing Conditions
The perfonnance of the probabilistic framework in simulat-

ing the observed variability in the T-NH3 pool of the upper
waters of the lake was evaluated by comparing the predicted
seasonal bounds to the population of observations [volume-
weighted average concentration in UML (Matthews et al.
2000)J for the 1989-1994 period (Fig. 6). The range of 0b-
servations of T-NH3 over this interval was quite broad (Fig.
6). The relative contributions of the individual sources of var-
iability are depicted here by sequential (cumulative) inclusion
of the effects of variations in (1) runoff for the 1989-1994
interval [Fig. 6(a)J; (2) METRO effluent T-NH3 concentration
[Fig. 6(b)J; (3) in..lake nitrification rate (kN) [Fig. 6(c)J; and
(4) vertical mixing for the 1989-1994 interval [Fig. 6(d)J. All
other inputs were specified according to values developed in
the original testing of the N model (Canale et al. 1996).

The effects of natural variations in runoff bounded most of
the observations reported in April and May over the 6-year
interval [Fig. 6(a)J. The broad variations predicted over the
January-April interval reflect the effects of the highly variable
and elevated tributary flows over the November-April inter-
val. Variations in lake T-NH31evels from runoff were predicted
to be much smaller over the June-October interval [Fig. 6(a)J.
Inclusion of the effects of interannual variations in the
MErRO eftluent T-NH3 concentration. represented by the two
cases, broadened the range of predictions over the July-Oc-
tober interval [Fig. 6(b)]. These predictions bounded substan-
tially more of the observations compared to accommodating
the effects of runoff only [Figs. 6(a and b)J.

Accommodating the major interannual differences in nitri-
fication (kN) within the lake greatly increased the predicted
variability from July through fall, bracketing all but a few low
observations over the interval [Fig. 6(c)J. The effects of inter-
annual differences in vertical mixing in the lake were minor
by comparison, though inclusion of this source of variability
does result in essentially bounding all the low values observed
in September and October [Fig. 6(d)]. These analyses indicate
the probabilistic modeling framework (Fig. 2) perfOmled well
in representing the variations in T-NH3 concentrations 0b-
served in the upper waters of Onondaga Lake [Fig. 6(d)].
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centratiom exceeding 3 mgN. L -1 for this management sce-
nario is essentially zero [shaded areas of Figs. 8(ac), (ad), (ae),
and (ai)], a high degree of certainty if this was the established
regulatory limit.

Violations of Chronic Standard

Prevailing Conditions

MANAGEMENT IMPLICATIONS

Toxicity Criteria, TMDLs, and
Probabilistic Frameworks

State standards for toxic substances are usually based on
criteria guidance provided by the EPA. Toxicity criteria de-
veloped by the EPA have three components (EPA 1991b): (1)
magnitude-the allowable concentration; (2) duration-the
averaging period for the allowable concentration; and (3) fre-
quency-how often the criteria can be exceeded. These fea-
wres are generally consistent with the character of response
of aquatic biological communities to toxic substances (EPA
1991b).

The TMDL process has been established by EPA (1991a)
as a quantitative regulatory framework to guide rehabilitation
programs in meeting standards in systems designated as "wa-
ter quality limited" (as per section 303d of the Federal Clean
Water Act). A TMDL analysis is expected to accommodate
critical environmental conditions and recurring features of sea-
sonality (BPA 1991a). A water quality model provides the nec-
essary quantitative linkage between external loads and receiv-
ing water concentrations of a toxicant in these analyses. The
selected model needs to have not only scientific credibility,
but also a structure that is consistent with the format of the
standard/criterion (BPA 199Ib). Simple steady-state models
have been widely used, particularly for stream TMDL analy-
ses. These model applications require specification of critical
conditions, thereby implicitly introducing an unavoidable dis-
cretionary (or arbitrary) component into the analysis. More
complex dynamic models embedded in probabilistic frame-
works, as developed here, are desired (BPA 1991b) because
(1) they reduce or eliminate arbitrary specifications; (2) they
can accommodate and quantify effects of uncertainty in JX'O-
cesses and natural variations in forcing conditions; and (3)
model output can be made consistent with the format of EPA
toxicity criteria (BPA 1991b).

Values of pH in the upper waters of Onondaga Lake have
been approximately nonnally distributed on a monthly basis
[Figs. 8(h)-(n), based on measurements]. The average pH val-
ues presented were the values that correspond to the mean of
the hydrogen ion concennations (~D. The occurrence of
higher pH values in April [Fig. 8(h)] compared to May (Fig.
8(i)] and June [Fig. 8(j)] reflects the effects of severe phyto-
plankton blooms that have most often occunoed in early spring
(Effler 1996). The probability of pH exceeding 8.0 in the upper
waters of the lake in April is nearly 45% (Fig..8(h)]. The
distributions of temperature reflect the annual heating cycle
(Figs. 8(0-u), based on measurements]. Much of the apparent
variability within the individual months shown for T is sys-
tematic, particularly in spring and fall, when rather rapid heat-
ing and cooling occur [Fig. 4(t)]. The distributions of CCC
(Figs. 8(v-ab); output from Monte Carlo calculations; see Fig.
2] are broader in spring and narrowest in October, and the
lowest mean values (that is, most stringent standards) occur in
July and August.

The predicted distributions of the margin of violation were
more skewed than the T-NH3 predictions (differences between
the mean and median values were within 15%) [Figs. 8(ac-
ai)]. A distinct seasonality was predicted for the margin of
violation and the extent of its variability [Figs. 8(ac-ai)]. The
distributions of the margin for prevailing conditions progres-
sively shifted to higher values from April to July (Figs. 8(ac-
at)], reflecting the shift to lower CCC values over the same
interval (Figs. 8(v-y)]. The distributions of th~ margin of vi-
olation shifted to lower values and were l"ss variable from
July to October (Figs. 8(af-ai)]. Under prevailing conditions
the CCC was predicted to be exceeded more than 90% of the
time in April, May, June, and July, consistent with observa-
tions (Matthews et al. 2000). The probability of violations in
October under prevailing conditions was substantially lower
(-50%) (Fig. 8(ai)]. This lower level bas two contributing
factors: the lower concentrations of T-NH3 (Fig. 8(g)] and the
lower pH values (Fig. 8(u)].

The improvement in the status of the lake with respect to
the standard that would occur from the specified 50% reduc-
tion in the T-NH3 discharge from METRO is depicted by the
systematic shifts in the frequency distributions for the margin
of violation [for selected months, as shaded areas of Figs. 8(ac,
ad. ae, and ai)], though substantial overlap with respect to
prevailing conditions was predicted. This shift reflects solely
the corresponding predicted reductions in lake T -NH3 concen-
nations (Figs. 8(a, b, c, and g)], as the distributions of CCC
remained unchanged from prevailing conditions for this sce-
nario analysis. Systematic shifts in pH, such as those that
could accompany a change in primary production/trophic state
(Vollenweider 1974-for example, decrease$ in pH for reduc-
tions in primary production driven by reductions in nutrient
loading) may need to be considered in poorly buffered sys-
tems. However, this is probably not an issue for Onondaga
Lake because it is so well buffered (Driscoll etal. 1994). Pre-
dicted probabilities of violation for the management scenario
considered here were about 60% for April (Fig. 8(ac), 80%
for June (Fig. 8(ae)], and 35% for October [Fig. 8(ai)].
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Probabilistic Ammonia Model, Onondaga Lake

A probabilistic modeling framework has been developed
here for Onondaga Lake to predict T-NH) concentrations and
margin of violation of the state standard and exceedance of
the national chronic toxicity criterion: The framework relies
on an extensive database of measurements and calculations for
the system that extends as long as 27 years. It accommodates
the effects of variability in several forcing conditions, includ-
ing (1) runoff, (2) vertical mixing, (3) in-lake nitrification rate,
(4) ammonia concentration in die METRO effluent, (5) lake
pH, and (6) lake temperature. The most important sources of
variability for the lake's T-NH) pool are natural variations in
runoff and die in'eguiar occurrence of in-lake nitrification
events during the fall IniXing period. The modeling framework
performed well in representing the wide variations in ammonia
and margins of violation dlat have been observed in the
upper waters of the lake. While this framework addresses a
single pollutant and utilizes extensive system-specific infor-
mation, the strategy had broad utility for different constituents
and systems, particularly within the context of TMDL analy-
ses.

The probabilistic output of the model, depicted as frequency
distribution plots, provides managers with a realistic represen-
tation of environmental variability for this constituent and re-
lated violations/exceedances of the toxicity standard/criterion.
A priori predictions of complete probability distributions, sup-
ported by the framework presented here, allow the risks in-
herent in alternate treatment strategies to be directly quantified.
Model output has been evaluated to depict the important role
antecedent tributary flow plays in regulating ammonia concen-
trations and status with respect to the standard/criterion in 00-
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ondaga Lake. Predictions of T-NH) for early spring in Onon-
daga Lake are largely insensitive to uncertainties in kinetic
inputs to the model because of the high flushing rate and low
temperatures that prevail over the antecedent late fall to early
spring interval.

Based on simulations made here with the framework for a
single hypothetical management scenario, METRO effluent
concentrations will need to be reduced substantially more than
50% to avoid violations of the ammonia standard in the lake.
Substantial overlap with prevailing in-lake T-NH) concentra-
tions and margins of violation of the chronic toxicity standard
were predicted for this management scenario. This overlap
serves to demonstrate an important point for managers that the
effects of natural variations in certain forcing conditions can
mask those associated with substantial changes in anthropo-
genic material loading. Managers need to be aware of the p0-
tential for such overlaps in designing and interpreting the re-
sults of water quality monitoring programs.

A major rehabilitation program is under way to abate the
effects of domestic waste on Onondaga Lake and eliminate
violations of water quality standards, including the ammonia
toxicity standard (Matthews et al.. 2000). The total cost for the
overall program is presently estimated to be -$400 million
(Effler et al. 2001) and will be phased over a 14-year period.
Application of the full probabilistic capabilities of the frame-
work developed here is recommended for the TMDL analysis,
which will establish the level of treatment necessary at
METRO that will eliminate the violations of the ammonia
standard that prevail in Onondaga Lake.
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NOTATION

The following symbols are used in this paper:

kN = nitrification rate constant (d-');
T = temperature rC); and
v, = vertical mixing coefficient (moa1.


