

NIAGARA FALLS STORAGE SITE Formerly Utilized Sites Remedial Action Program

2019 ENVIRONMENTAL SURVEILLANCE TECHNICAL MEMORANDUM

PREPARED BY:
U.S. ARMY CORPS OF ENGINEERS
BUFFALO DISTRICT
1776 NIAGARA STREET
BUFFALO, NEW YORK 14207-3199

2019 Niagara Falls Storage Site Environmental Surveillance Technical Memorandum	

Table of Contents

1.0 IN	TRODUCTION	1
1.1	Brief History of the Niagara Falls Storage Site	1
1.2	Overview of Environmental Surveillance Program	3
1.3	Regional Hydrogeology	3
1.3.1	Groundwater	3
1.3.2	2 Surface Water Drainage	4
2.0 SA	AMPLE COLLECTION AND ANALYSIS	5
2.1	Sampling Locations and Rationale	5
2.2	Sampling Parameters and Laboratory Analytical Methods	5
2.3	Sample Collection Techniques	6
2.3.1	Groundwater and Surface Water	7
2.3.2	2 Sediment	7
2.3.3	Radon Flux	7
2.3.4	Radon Gas	7
2.3.5	5 Gamma Emissions	8
3.0 Rl	EGULATORY GUIDELINES	
3.1	Dose to the Public	9
3.2	Radioactive Constituents in Air	
3.2.1	1 23	
3.2.2	\mathcal{E}	
3.3	Radioactive and Chemical Constituents in Groundwater	
3.3.1		
3.3.2	\boldsymbol{c}	
3.3.3	1	
	Chemicals and Radionuclides	
3.4	Radioactive and Chemical Constituents in Sediment.	
3.5	Radioactive and Chemical Constituents in Surface Water	
	NALYTICAL DATA AND INTERPRETATION OF RESULTS	
4.1	Air	
4.1.1		
4.1.2		
4.1.3		
4.1.4		
4.1.5		
4.2	Surface Water	
4.2.1		
4.2.2		
4.2.3	$oldsymbol{\mathcal{U}}$	
4.3	Sediment	
4.3.1		
4.3.2	ϵ	
4.4	Groundwater	
4.4.1		
4.4.2		
4.4.3	3 Groundwater Quality Parameters	22

4.4.4	Groundwater Radiological Findings	22
4.4.5	Groundwater Chemical Findings	
4.4.6	Groundwater Trend Analysis	
5.0 CO	NCLUSION	
6.0 REF	FERENCES	30
List of Table	les (following text)	
Table 1:	Evolution of NFSS Environmental Surveillance Plan	
Table 2:	2019 ESP Groundwater Sampling NFSS	
Table 3:	2019 Surface Water and Sediment Sampling NFSS	
Table 4:	2019 External Gamma Radiation Dose Rates	
Table 5:	2019 Radon Gas Concentrations	
Table 6A:	2019 Radon Flux Measurements	
Table 6B:	2019 Limited Radon Flux Measurements	
Table 7:	2019 Surface Water Field Parameter Measurements	
Table 8:	2019 Results of Radionuclide Analysis of Surface Water	
Table 9:	2019 Results of Radionuclide Analysis of Sediment	
Table 10:	2019 Water Level Measurements	
Table 11:	2019 Groundwater Field Parameter Measurements	
Table 12:	2019 Groundwater Water Quality Data	
Table 13:	2019 Results of Radionuclide Analysis of Groundwater	
Table 14:	2019 Groundwater Analytical Results - Volatiles	
List of Figu	<u>res</u>	
Figure 1:	Site Location NFSS	
Figure 2:	Location of the IWCS within the NFSS Boundary	
Figure 3:	Schematic of Conceptualized Hydrostratigraphy	
Figure 4:	Locations of Radon Flux Measurements on the IWCS	
Figure 4A:	Location of Additional and Resampled Radon Flux Locations	
Figure 5:	ESP Groundwater Monitoring Wells	
Figure 6:	Location of RadTrack2 Detectors and Optically Stimulated Luminescence Dosimeters (OSL)	Ds)
Figure 7:	Location of Surface Water and Sediment Sampling Locations	
Figure 8:	External Gamma Radiation Dose Rates at NFSS Perimeter	
Figure 9:	External Gamma Radiation Dose Rates at IWCS Perimeter	
Figure 10:	Census Data	
Figure 11:	Total Radium Concentrations in Sediment between 1997 and 2019	
Figure 12:	Total Uranium Concentrations in Sediment between 1997 and 2019	
Figure 13:	Groundwater Elevation Measurements for Lower Water Bearing Zone (May	
D' 11	23, 2019 – Seasonal High)	
Figure 14:	Groundwater Elevation Measurements for Upper Water Bearing Zone (May	
E: 15	23, 2019 – Seasonal High)	
Figure 15:	Groundwater Elevation Measurements for Lower Water Bearing Zone (March 12, 2019 – Seasonal Low)	
Figure 16:	Groundwater Elevation Measurements for Upper Water Bearing Zone	
5	Dir and interested to opport when bearing bone	

(August 26, 2019 – Seasonal Low)

Attachment A: Non-Radiological Analytical Data for Surface Water and Sediment

Table A-1: 2019 Results of PAH Analysis of Surface Water
 Table A-2: 2019 Results of Metals Analysis of Surface Water
 Table A-3: 2019 Results of Metal Analysis of Sediment
 Table A-4: 2019 Results of PAH Analysis of Sediment

Attachment B: Mann-Kendall Test Results

Attachment B-1: Total in Uranium Surface Water

Attachment B-2: Radium-226 in Sediment (901.1 analysis only)

Attachment B-3: Uranium-238 in Sediment
Attachment B-4: Total Uranium in Groundwater

Acronyms and Abbreviations

AEC Atomic Energy Commission

ASTM American Society for Testing and Materials

CAP88-PC Clean Air Act Assessment Package – 1988 (U.S. EPA)

CERCLA Comprehensive Environmental Response, Compensation, and Liability Act

CF confidence factor

CFR Code of Federal Regulations
COV coefficient of variation
DOD Department of Defense

DOE United States Department of Energy

DOH Department of Health

EPA United States Environmental Protection Agency

ESP environmental surveillance program

FUSRAP Formerly Utilized Sites Remedial Action Program

IWCSInterim Waste Containment StructureKAPLKnolls Atomic Power LaboratoryLOOWLake Ontario Ordnance WorksMCLmaximum contaminant levelMDAminimum detectable activityMEDManhattan Engineer District

MEI maximally exposed off-site individual

m meters

m³ cubic meter(s)

μg/g micrograms per gram

μg/L micrograms per liter

mg/kg milligrams per kilogram

NCRP National Council on Radiation Protection and Measurements
NESHAPs National Emission Standards for Hazardous Air Pollutants

NFSS Niagara Falls Storage Site
NTUs nephelometric turbidity units
NRC Nuclear Regulatory Commission

NYS New York State

NYSDEC New York State Department of Environmental Conservation

OSLD optically stimulated luminescence dosimeter

PAH polycyclic aromatic hydrocarbon

PCE tetrachloroethene pCi/g picocuries per gram pCi/L picocuries per liter

Ra radium

RCRA Resource Conservation and Recovery Act

RSL regional screening level
SCO soil cleanup objective
SDWA Safe Drinking Water Act
TDS total dissolved solids
TED total effective dose
U lab qualifier—nondetect
U₃O₈ triuranium octoxide

USACE United States Army Corps of Engineers

VOC volatile organic compound

Units of Measurement and Conversion Factors-Radioactivity

Parameter	Conventional Units	SI Units	Conversion Factor
Dose	millirem (mrem)	millisievert (mSv)	1 mrem = 0.01 mSv
Activity	picocurie (pCi)	becquerel (Bq)	1 pCi = 0.037 Bq

Units of Measurement and Conversion Factors-Mass, Length, Area, and Volume

Parameter	SI Units	English Units	Conversion Factor
Mass	gram (g)	ounce (oz)	1 g = 0.035 oz
	kilogram (kg)	pound (lb)	1 kg = 2.2046 lb
Length	centimeter (cm)	inch (in)	1 cm = 0.394 in
	meter (m)	foot (ft)	1 m = 3.281 ft
	kilometer (km)	mile (mi)	1 km = 0.621 mi
Area	hectare (ha)	acre	1 ha = 2.47 acres
Volume	milliliter (mL)	fluid ounce (fl. oz)	1 mL = 0.0338 fl. oz
	liter (L)	gallon (gal)	1 L = 0.264 gal
	cubic meter (m ³)	cubic yard (yd³)	$1 \text{ m}^3 = 1.307 \text{ yd}^3$

2019 Niagara Falls Storage Site Environmental Surveillance Technical Memorandum

EXECUTIVE SUMMARY

Purpose: This technical memorandum documents the scientific methods, criteria, data, and findings of the Environmental Surveillance Program (ESP) at the Niagara Falls Storage Site (NFSS). The U.S. Army Corps of Engineers Buffalo District is executing this program in support of its mission under the Formerly Utilized Sites Remedial Action Program (FUSRAP) to protect human health and the environment at the NFSS. The Buffalo District publishes this technical memorandum annually and posts it to the Corps website in the "Environmental Monitoring" section: https://www.lrb.usace.army.mil/Missions/HTRW/FUSRAP/Niagara-Falls-Storage-Site/.

Site Description and Background: The NFSS is located at 1397 Pletcher Road in the Town of Lewiston, New York, 19 miles (30.6 km) north of Buffalo, New York. The NFSS is federally owned property that covers an area of 191 acres. The NFSS was originally part of a World War II explosives plant called the Lake Ontario Ordnance Works (LOOW), which was approximately 7,500 acres in size. Between 1944 and 1954, the Manhattan Engineer District (MED) and the Atomic Energy Commission (AEC) (a predecessor to the U.S. Department of Energy [DOE]) brought radioactive wastes and residues to a small portion of the LOOW. Throughout the 1970s, the AEC gradually consolidated its operations and sold excess property to the public. In the 1980s, the DOE constructed a ten-acre Interim Waste Containment Structure (IWCS) on the NFSS to contain the radioactive wastes and residues.

In October 1997, Congress transferred management of FUSRAP (which had been initiated in 1974) from the DOE to the Corps of Engineers. In addition to investigating and remediating site contaminants at the NFSS, the Corps of Engineers is responsible for maintaining the site and conducting the ESP. The environmental surveillance activities the DOE initiated in 1979 have continuously been reviewed and updated; today the Corps of Engineers Buffalo District ensures that wastes buried within the IWCS and contaminated on-site soil and groundwater do not pose a risk to human health and the environment. The program includes monitoring air, water, and sediments for radiological and chemical parameters.

In December 2007 and April 2011, the Corps of Engineers completed the *Remedial Investigation Report* for the NFSS and NFSS Remedial Investigation Report Addendum, respectively (USACE 2007, USACE 2011). These reports defined the nature and extent of contaminants on the NFSS and assessed their potential long-term risks. Based on findings from these investigations and public input, the Corps of Engineers further enhanced the ESP.

Between 2012 and 2014, the Corps of Engineers investigated further to locate the source of elevated uranium in groundwater south and east of the IWCS. As part of these investigations, the Corps of Engineers worked to prevent possible off-site migration of contaminants through site utilities. The work included installing monitoring wells, collecting and analyzing soil and groundwater samples, sealing manholes and pipelines near the property boundary, excavating investigative trenches, and completing a geophysical survey. The Corps of Engineers presented results of these investigations in reports issued in August 2013 (U.S. Army Corps of Engineers [USACE], 2013a) and February 2015 (USACE 2015a).

In 2013, the Corps of Engineers implemented the following modifications to the ESP:

- The number of wells monitored semiannually increased from 39 to 54 (to include several wells installed in 2012); the analytical parameters were refined to include total uranium, radium-226, and volatile organic compounds (for a limited number of wells)
- The number of surface water and sediment locations sampled semiannually decreased from 11 to 9; the analytical parameters were refined to include total uranium, radium-226, polycyclic aromatic hydrocarbons, and metals.

In 2014, the Corps of Engineers added well MW943 to the ESP, increasing the total number of wells monitored semiannually to 55. Well MW943 monitors the upper water-bearing zone south of the IWCS.

In late 2018, the Corps of Engineers replaced nine ESP monitoring that were in disrepair. Wells replaced include A50, A55, BH49, BH49A, MW953, OW13B, OW15B, OW17B, and OW18B. The new wells are identified as the former name followed by an "R" for replacement (e.g., A50R, A55R, BH49R, BH49AR, etc.)

The Corps of Engineers made no changes to the air monitoring schedule and continues to measure radon-222 flux on the IWCS cap annually and radon-222 concentrations and gamma emissions at the IWCS perimeter and NFSS property boundary semiannually.

To evaluate environmental surveillance data, the Corps of Engineers uses the criteria, standards, and guidelines of the DOE, U.S. Environmental Protection Agency (EPA), Nuclear Regulatory Commission (NRC), and New York State Department of Environmental Conservation (NYSDEC) for comparison purposes.

Additional information about the site and the ESP is available on the Corps of Engineers Buffalo District website: https://www.lrb.usace.army.mil/Missions/HTRW/FUSRAP/Niagara-Falls-Storage-Site/.

Key Findings: The 2019 environmental surveillance analytical results confirm that site controls are fully protective of human health and the environment.

With the exception of radon flux data, the results of the 2019 surveillance program are consistent with previous years and show:

- Site radon-222 concentrations are below the DOE off-site limit of 3.0 picocuries/liter (pCi/L).
- The calculated dose to a receptor due to airborne particulates is below the EPA guideline of 10 millirem/year (excluding radon); the cumulative dose, which is calculated by adding the maximum external gamma dose to the maximum airborne particulate dose, is significantly less than the DOE limit of 100 millirem/year.
- Surface water samples collected in 2019 exhibited trace levels of polycyclic aromatic hydrocarbons; several metals were detected and the results were comparable to previous years.
- Several metals were detected in all sediment samples and several polycyclic aromatic hydrocarbons were detected predominantly in upstream sediment samples; 2019 results were generally comparable to past results.
- Tetrachloroethene was detected in a groundwater monitoring well in the former acidification area.

The calculated annual average radon flux across the IWCS remained below 20 picocuries per meter squared per second (pCi/m²/s), the standard specified in 40 CFR Part 61, Subpart Q despite an elevated result from canister location 65, approximately 50 feet from canister 62 that produced an elevated measurement in 2018. To investigate, the Corps of Engineers performed a limited gamma walkover survey and found elevated radioactivity around the area of canister locations 62 and 65. The area of concern identified by the flux and gamma walkover survey data is located above the eastern wall of Building 411 that contains radioactive residues in the IWCS. The Corps of Engineers has evaluated strategies to fix the problem and decided to proceed with an iterative approach. First, several inches of topsoil and grass seed will be added in late spring 2020 to the areas where elevated readings and distressed grass were identified, around canister locations 62 and 65. The Corps of Engineers believes that enhancing the grass cover will restore optimal moisture to the underlying clay layer that may have developed desiccation cracks. Once the cover is replaced, radon flux measurements will determine whether this approach has been successful.

If radon flux levels are not reduced, the Corps of Engineers will explore ways to repair the underlying clay blanket.

Based on regulatory compliance data collected in 2019, the Corps of Engineers has demonstrated that the site is compliant with regulatory criteria and remains protective of human health and the environment. The average radon flux across the IWCS measured during the annual monitoring event performed in July 2019 remained below 20 pCi/m²/s, the standard specified in 40 CFR Part 61, Subpart Q, and radon-222 concentrations measured at the site boundary were well below 3 pCi/L, the limit for annual average radon-222 concentrations, not including background.

Total uranium concentrations in surface water across the Central Drainage Ditch were fairly stable with no evidence of a statistically increasing or decreasing trend. The most downgradient location in the Central Drainage Ditch, SWSD011, shows evidence of "probably increasing" trend. Both locations sampled along the West Drainage Ditch, WDD2 and WDD3, exhibit "increasing" trends. However, total uranium concentrations in 2019 at all three locations remain low: $7.81 \mu g/L$ and $9.65 \mu g/L$ at SWSD011; $2.24 \mu g/L$ and $3.8 \mu g/L$ at WDD2; and, $2.29 \mu g/L$ and $4.40 \mu g/L$ at WDD3. For comparison, the site-specific background total uranium concentration in surface water developed for use in the remedial investigation was $12.5 \mu g/L$ (USACE 2007).

Trend analysis shows uranium-238 concentrations in sediment increasing in a downgradient path along the Central Drainage Ditch. However, the highest concentration of uranium-238 detected at any location in 2019 was 3.06 pCi/g (SWSD010), which is less than the site-specific background concentration of 3.08 pCi/g reported in the remedial investigation (USACE 2007).

The maximum concentration of radium-226 in sediment detected in the Central Drainage Ditch in 2019 was 2.26 pCi/g at location SWSD025. For comparison, the site-specific background concentration developed for the remedial investigation was 2.43 pCi/g (USACE 2007). Radium-226 is known to be readily adsorbed to clays and mineral oxides present in sediment, especially near neutral and alkaline pH conditions, so it is usually not a mobile constituent in the environment. Therefore, radium-226 would not be expected to migrate significantly from the area where it is released or generated. Radium-226 concentrations in surface water continue to be predominantly nondetect or less than the laboratory detection limit.

The 2019 groundwater analytical data showed that total uranium concentrations in 25 groundwater monitoring wells exceeded the uranium drinking water criterion (30 μ g/L). The most elevated total uranium concentrations continue to be detected in wells installed in late 2012 east and south of the IWCS as part of the Balance of Plant field investigation. The Corps of Engineers believes the source of uranium in wells east of the IWCS is residual soil contamination from former operations in this area, which included a railroad bed, storage piles, and a decontamination pad used during construction of the IWCS. In addition, residual contamination in the sanitary sewer near Manhole 6, which has been removed and the sewer line plugged, may have contributed to groundwater contamination in this area. The Corps of Engineers believes the former storage piles and residual contamination from former Building 409 are the source of the uranium in wells south of the IWCS (USACE 2015a). The uranium contamination in groundwater south of the IWCS, and in other site areas, was produced when the historical residue piles and storage areas leached uranium into the underlying low-permeability soils. Subsequent remediation removed the residue sources and some contaminated soils, whereas the underlying groundwater retained the dissolved uranium impacts.

Trend analysis shows increasing or "probably increasing" trends in 10 of 57 wells evaluated. Among the 10 wells, only two wells, OW04A and BH49AR, are located proximate to the IWCS. The cause of these

increasing uranium concentrations is likely legacy sources since there is no apparent trend pattern of increasing uranium concentrations when considering either their respective paired wells (OW04B and BH49R) or nearby wells.

It is noted that uranium concentrations normally increase during wet-season periods (winter through spring) and decline during dry-season periods (late spring through fall), which is evident to varying degrees in many upper water-bearing zone wells. This variation is due to a combination of residual low-concentration soil impacts (especially south of the IWCS) and changes in uranium solubility during seasonal soil saturation (or groundwater recharge) that increases the oxygen content in the subsurface. The seasonal oxygenation of groundwater increases the uranium solubility of pre-existing contamination, and thus increases concentrations in spring-time samples. Water levels decline throughout the summer and fall due to evapotranspiration of rainfall, which increases groundwater temperatures and reduces the oxygen content in groundwater. Iron-reducing bacteria samples also increase during this period. This geochemical mechanism lowers uranium solubility, promotes uranium adsorption to soil minerals, and lowers groundwater concentrations in fall samples. This geochemical process repeats annually, as seen in the spring and fall sampling data. This trend may be less evident or absent in wells with larger sand lenses, but is commonly evident in upper water-bearing zone wells.

1.0 INTRODUCTION

The U.S. Army Corps of Engineers is addressing the Niagara Falls Storage Site (NFSS) as part of the Formerly Utilized Sites Remedial Action Program (FUSRAP); this effort is subject to the provisions of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended, and the National Oil and Hazardous Substances Pollution Contingency Plan. The site is located in the Town of Lewiston, New York, north of Buffalo (Figure 1).

The Corps of Engineers Buffalo District conducts the NFSS Environmental Surveillance Program (ESP); it performs site operations, maintenance, and monitoring to ensure protection of human health and the environment. These activities are ongoing across the site, including at Interim Waste Containment Structure (IWCS). The IWCS contains radiologically contaminated materials from cleanup actions the U.S. Department of Energy (DOE) conducted more than 20 years ago. The ESP is the focus of this report.

1.1 Brief History of the Niagara Falls Storage Site

The NFSS represents a portion of the former Lake Ontario Ordnance Works (LOOW). Portions of the LOOW were used by the Corps of Engineers Manhattan Engineer District (MED) and U.S. Atomic Energy Commission (AEC) to store radioactive residues and other materials beginning in 1944. Nearly all the radioactive residues in the IWCS originated from uranium (U) processing activities conducted for MED and AEC at two locations: the Linde Air Products facility in Tonawanda, New York, and the Mallinckrodt Chemical Works refinery in St. Louis, Missouri. Other residues were generated from past processing activities at the Middlesex Sampling Plant in New Jersey.

The first materials sent to NFSS for storage were low-grade radioactive residues from processing pitchblende ore at the Linde Air Products facility. These residues came about as a result of processing ores with different uranium (U₃O₈) contents; they are categorized as follows:

- R-10 residues: from processing ore with 3.5 percent U₃O₈
- L-30 residues: from processing ore with 10 percent U3O8
- L-50 residues: from processing ore with 7 percent U₃O₈
- F-32 residues: from processing ore (unknown percent U3O8)

Beginning in 1949, highly radioactive residues from uranium processing at the Mallinckrodt Chemical Works—referred to as the K-65 residues—were shipped to NFSS in 208-liter (L) (55-gallon [gal]) drums for storage. The residues were generated from uranium ore containing 35 to 65 percent U3O8. Between 1950 and 1952, the K-65 residues were transferred from the 208-L (55-gal) drums to a large concrete tower on site, referred to as Building 434. The residues remained there until the DOE transferred them to the IWCS in the 1980s.

The K-65 residues represent the main hazard in the IWCS. Uncontained, the high levels of radium-226 (Ra-226) in these residues would emit substantial external gamma radiation and release radon-222 (Rn-222) gas to air. Without controls, the doses from external gamma irradiation and inhalation of Rn-222 progeny could harm anyone nearby.

In addition to these residues, radioactive wastes from a number of other federal government programs were sent to NFSS decades ago for storage or disposal. These included radioactive wastes from the Knolls Atomic Power Laboratory (KAPL) and the University of Rochester. The KAPL processing wastes contained some residual plutonium and fission product radioactivity (cesium-137 and strontium-90).

These materials were transferred to the Oak Ridge Burial Grounds during the late 1950s; most of the buildings where they were stored were later destroyed (EA 1998).

Based on an investigation of the former storage areas, the DOE concluded that all suspect areas had been remediated for unrestricted use, and that "although minor KAPL residuals remain, particularly cesium-137, they are less than a risk-based screening benchmark. Therefore, they do not pose an unacceptable risk and do not require further remediation" (DOE 2012).

From 1981 to 1991, the DOE performed a number of cleanup activities at the site and nearby areas known as vicinity properties. The DOE placed the radioactive materials generated by these activities in an engineered structure on the west side of the NFSS property, the IWCS (Figure 2).

Within the IWCS, the DOE placed the more highly contaminated residues (K-65, L-30, L-50, and F-32) in existing concrete structures that had been part of the freshwater treatment plant for the LOOW during the 1940s. It placed L-50 residues in Buildings 413 and 414, cylindrical structures made of reinforced concrete. They had been used as clarifier tanks at the treatment plant. The DOE placed the remaining residues in several bays of Building 411, which was also made of reinforced concrete. It had originally been designed to securely hold liquids.

The DOE placed contaminated soil and debris from its cleanup of the site and vicinity properties together with the R-10 residues within the IWCS and then compacted them to increase stability. Soils contaminated by the K-65 residues during interim storage, referred to as tower soils, were placed in the north end of Building 411. The DOE addressed the R-10 residues in the same manner as contaminated soil due to their similar radionuclide concentrations. It put additional contaminated soil and debris in the remaining areas of the IWCS so as to ensure the stability of the structure.

The IWCS was constructed by installing a clay dike and cutoff wall around the areas containing all the consolidated wastes. The wall was tied into the underlying clay formation. A multi-layered cap was placed over the contents after the cleanup actions were completed. These DOE actions are described in further detail in the remedial investigation report (U.S. Army Corps of Engineers [USACE] 2007) and the references cited therein.

In September 1986, the DOE issued a record of decision under the National Environmental Policy Act to store the consolidated residues and other contaminated materials in the IWCS. The record of decision identified the IWCS as an acceptable long-term management solution for the residues once the existing interim cap was replaced with a long-term, multi-layered, engineered cap. The design service life of the clay dike and cutoff walls surrounding the IWCS and the natural glaciolacustrine clay beneath the IWCS is 200 to 1,000 years (Bechtel National, Inc. [BNI] 1986); the design service life of the interim IWCS cap is 25 to 50 years (BNI 1986).

In October 1997, Congress transferred overall responsibility for implementing FUSRAP from DOE to the Corps of Engineers and directed that FUSRAP remediation be done according to CERCLA. With this transfer, the Corps of Engineers assumed responsibility for the remedial action process at NFSS.

Since that time, the Corps of Engineers completed a number of studies of the NFSS, including the Remedial Investigation Report for the NFSS (USACE 2007), NFSS Remedial Investigation Report Addendum (USACE 2011), Feasibility Study Report for the IWCS at the NFSS (USACE 2015b), Proposed Plan IWCS Operable Unit (USACE 2015c), and the Feasibility Study Balance of Plant and Groundwater Operable Units (USACE 2019). The Record of Decision for the Interim Waste Containment Structure signed in March 2019 selected remedial Alternative 4, complete removal and offsite disposal of all waste in the IWCS (USACE 2017).

1.2 Overview of Environmental Surveillance Program

The DOE initiated the ESP at the NFSS in 1979 before the construction of the IWCS, monitoring air, water, and external gamma radiation (and later streambed sediments) to ensure human health and environmental protection from radioactive residues and wastes later buried in the IWCS. In 1997, when responsibility for FUSRAP transferred to the Corps of Engineers, the Corps of Engineers Buffalo District continued to follow the DOE ESP, with some revisions over the years. The Corps of Engineers reports its findings annually in the form of this technical memorandum, which is posted to the NFSS website at https://www.lrb.usace.army.mil/Missions/HTRW/FUSRAP/Niagara-Falls-Storage-Site/.

The surveillance program is designed to achieve the following objectives:

- Ensure protection of human health and the environment
- Verify compliance with environmental regulatory standards
- Verify the IWCS is performing as designed

To meet these objectives, the Corps of Engineers monitors environmental media and regularly reassesses the adequacy of the program. If warranted, the Corps of Engineers makes necessary adjustments to the program. It has made several modifications to the surveillance program over time. These changes are identified on Table 1. Tables 2 and 3 show the ESP sampling schedule for groundwater and surface water/sediment, respectively. Sample locations and analytical parameters and methods are detailed in Section 2.0.

In addition to collecting and analyzing environmental samples, the ESP calculates the dose to off-site receptors from airborne emissions of site soils. To do this, the Corps of Engineers uses annual weather data collected at the Niagara Falls International Airport by the National Weather Service. The dose to off-site receptors based on gamma radiation measurements is also calculated and added to the airborne emissions dose to determine the cumulative dose to the public from the NFSS.

1.3 Regional Hydrogeology

1.3.1 Groundwater

The NFSS and surrounding vicinity are underlain by two water-bearing zones within 50 feet of the ground surface; these are separated by an aquitard, or confining unit. The two water-bearing zones, the upper water-bearing zone and the lower water-bearing zone, are detailed below.

The upper water-bearing zone is present in the surficial Brown Clay Unit. This is situated above the Gray Clay Unit (Figure 3). The Brown Clay Unit consists of a clayey silt and silty clay groundmass. It has occasional sand and gravel lenses. Coarse-grained deposits appear in places along the undulating contact between the Brown Clay Unit and the Gray Clay Unit.

The Corps of Engineers conducted a geostatistical analysis of these coarse-grained lenses to assess their continuity or whether they act as preferential migration pathways for contamination. Lithologic information from boring logs was spatially analyzed using semivariogram calculations and models.

The results suggest the sand lenses in the upper water-bearing zone are intermittent and vertically and horizontally discontinuous, vary considerably in thickness, color, texture, extent, and saturation, and are

not horizontally continuous over distances greater than 4.57 to 6.1 meters (15 to 20 feet) and vertical distances of 1.22 to 1.83 meters (4 to 6 feet). As a result, the occurrence of groundwater varies across the site (i.e., proximate wells may have noticeably different water levels depending on the presence or absence of sand lenses). Regional groundwater flow in the upper water-bearing zone is to the northwest towards Lake Ontario.

Underlying the Brown Clay Unit is the Gray Clay Unit, which consists of glacio-lacustrine clay and acts as an aquitard that separates the upper water-bearing zone from the lower water-bearing zone and minimizes transport between the two zones (Figure 3). For purposes of classification, wells that terminate in the Gray Clay Unit are considered representative of the upper water-bearing zone.

The lower water-bearing zone consists of unconsolidated glacial sediments, most notably the Alluvial Sand and Gravel that overlie the upper, fractured portion of the Queenston Formation (Figure 3). It extends from the bottom of the Gray Clay Unit to the bottom of the weathered zone of the Queenston Formation. A regional groundwater divide (the Lockport Escarpment) is approximately two miles south of the NFSS. Regional groundwater flow north of the divide is toward the northwest, whereas groundwater flow south of the divide is toward the southwest.

The entire lower zone varies from 3.05 to 11.73 meters (10 feet to 38.5 feet) in thickness; it consists of the stratified sands and gravels of the Alluvial Sand and Gravel Unit, the dense silt and sands of the Red Silt Unit, and the weathered and fractured upper portions of the Queenston Formation in the upper 3.05 meters (10 feet) of the bedrock. The lower water-bearing zone has higher permeability and more lateral continuity than the upper water-bearing zone. The lower water-bearing zone generally shows a westerly to northwesterly flow.

1.3.2 Surface Water Drainage

Before site development, surface drainage from the NFSS entered Four Mile, Six Mile, and Twelve Mile Creeks. All of these flow northward to Lake Ontario. During the 1940s, drainage modifications routed surface water to a series of linear ditches that eventually coalesce into the Central Drainage Ditch. The Central Drainage Ditch enters into Four Mile Creek approximately 3 miles northwest of the NFSS. The vegetation that grows in the on-site ditches during the summer months dewaters the ditches via evapotranspiration between rainfall events.

Groundwater elevations in wells near the ditches are notably lower throughout the summer and early fall; this is due to higher localized evapotranspiration. In other words, wetland vegetation in and along the ditches creates a significant moisture deficit in the surrounding soils. Low baseflow conditions in the site ditches between rainfall events also indicate that groundwater in the clayey soils does not significantly discharge into the ditches (i.e., surface drainage is the main contributor to flow).

2.0 SAMPLE COLLECTION AND ANALYSIS

2.1 Sampling Locations and Rationale

The purpose of the ESP is to ensure the protection of human health and the environment by monitoring the IWCS and other site media for release of hazardous constituents.

To monitor the integrity of the IWCS, the Corps of Engineers collects:

- Annual radon-222 flux data via 180 radon flux canisters placed on the IWCS protective cap at discrete grid intersections and at three off-site (background) locations, as shown on Figure 4.
- Semiannual groundwater samples from 44 monitoring wells, 13 wells screened in the lower water-bearing zone and 31 wells screened in the upper water-bearing zone, near the IWCS (two wells are sampled on a quarterly basis), as shown on Figure 5.
- Semiannual radon and external gamma radiation samples by placing Radtrak2® detectors and optically stimulated luminescence dosimeters (OSLDs), respectively, at seven locations around the perimeter of the IWCS, as shown on Figure 6.
- Semiannual surface water and sediment sampling from a total of nine locations shown on Figure 7 along the West Drainage Ditch, Central Drainage Ditch, and east (upstream) of the Central Drainage Ditch (one location is sampled on a quarterly basis).
 - o SWSD009, SWSD021, and SWSD023 were selected as "upstream" locations because they are located at the site boundary where surface water flows onto NFSS from off site.
 - SWSD010, SWSD011, SWSD022, and SWSD025 are situated along the Central Drainage Ditch.
 - o WDD2 and WDD3 are located along the West Drainage Ditch.

In addition, the Corps of Engineers collects:

- Semiannual groundwater samples from 11 monitoring wells, one well screened in the lower water-bearing zone and ten wells screened in the upper water-bearing zone, as shown on Figure 5 (note that well MW922 is sampled only if well MW921 is dry).
- Semiannual radon and external gamma radiation samples by placing Radtrak2® detectors and OSLDs, respectively, at 16 locations within and around the perimeter of the site and at three offsite (background) locations, as shown on Figure 6.
- Quarterly water level measurements in over 100 monitoring wells throughout the site to monitor the groundwater flow directions in the upper and lower water-bearing zones.

2.2 Sampling Parameters and Laboratory Analytical Methods

Environmental surveillance monitoring of air, water, and sediment includes the following analytes:

- The IWCS cap and off-site locations are monitored for radon-222 flux.
- The perimeter of the IWCS and the NFSS and off-site locations are monitored for radon concentrations and gamma emissions.
- Sediment is monitored for total uranium and radium-226, as well as metals and polycyclic aromatic hydrocarbons (PAHs) (to evaluate potential impacts from off-site sources such as Modern Landfill).
- Surface water is monitored for total uranium, radium-226, metals, and PAHs; field measurements
 are recorded for dissolved oxygen, turbidity, pH, temperature, specific conductivity, and
 oxidation-reduction potential.

Groundwater is monitored for total uranium, radium-226, volatile organic compounds (VOCs)
(limited to five wells), anions, and water quality parameters; field measurements are recorded for
dissolved oxygen, turbidity, pH, temperature, specific conductivity, and oxidation-reduction
potential.

The Corps of Engineers uses standard analytical methods approved and published by EPA and the American Society for Testing and Materials (ASTM) for chemical (i.e., all nonradiological) analyses. The laboratories conducting the radiological analyses adhere to EPA, National Urban Security Technology (formerly the Environmental Measurements Laboratory) and ASTM standard methods. Radiological and chemical laboratories are accredited through the Department of Defense (DOD) Environmental Laboratory Accredited Program. That accreditation is based on conformance to the DOD Quality Systems Manual for Environmental Laboratories. The laboratory analytical methods associated with sediment, surface water, and groundwater monitoring are presented in the following table:

Doubleston	Analytical Method			
Parameter	Groundwater Surface Water		Sediment	
Volatile Organic Compounds	SW 846 8260 (select wells only)			
Polycyclic Aromatic Hydrocarbons		SW 846 8270	SW 846 8270	
Metals		SW 846 6010/6020/7470	SW 846 6010/7470	
Total Uranium	ASTM D5174.97, Trace Uranium by Pulsed Laser Phosphorimetry	ASTM D5174.97 Trace Uranium by Pulsed Laser Phosphorimetry	HASL-300m, Iso-uranium	
Radium-226	EPA 903.1	EPA 903.1	EPA 901.1m	
Anions	EPA 300.0 ¹			
Water Quality • Alkalinity • Total Dissolved Solids	SM-2320B SM-2540C			

Ortho-phosphate is tested as phosphorus using method A4500-P-F (4500-P Standard Method) --- Indicates that media is not analyzed for that parameter(s)

2.3 Sample Collection Techniques

All environmental surveillance activities at the NFSS are conducted in accordance with DOD Environmental Field Sampling Handbook (DOD 2013) and the Uniform Federal Policy for Quality

Assurance Project Plans (UFP-QAPP). The UFP-QAPP provides procedures and guidance on implementing the national consensus standard (ANSI/ASQ E-4, *Quality Systems for Environmental Data and Technology Programs*) for the collection and use of environmental data at federal facilities.

2.3.1 Groundwater and Surface Water

The Corps of Engineers collects groundwater samples using low-flow sampling techniques in accordance with EPA's Ground Water Issue Low-Flow (Minimal Drawdown) Ground-Water Sampling Procedures (EPA/540/S-95/504). Existing polyethylene tubing is used for each well during each sampling event and is replaced when necessary. The Corps of Engineers also measures groundwater levels and uses sample collection techniques in accordance with Engineering Manual 1110-2-1421, *Groundwater Hydrology* (USACE 1999).

The Corps of Engineers collects surface water samples by using a peristaltic pump. This type of pump is needed because of the shallowness of the designated ditch locations. New polyethylene tubing is carefully placed below the water line to minimize disturbance of organic materials and sediments in the ditch.

If turbidity measurements for any groundwater or surface water sample exceed 50 nephelometric turbidity units (NTUs), the Corps of Engineers field filters the sample via a disposable 0.45 micron in-line filter to remove solids and reduce the turbidity readings to below the 50 NTU threshold. Both the filtered and unfiltered samples are sent to the laboratory for analysis.

2.3.2 Sediment

The Corps of Engineers collects sediment using a stainless steel posthole digger. This digger works well in areas where there are excess fibrous materials and roots from phragmites. A sample consists of several grab samples (5 to 10 centimeters [2 to 4 inches] in depth) near the center of the ditch below the water line. The cores are placed in a stainless steel pan and are composited into sample containers.

2.3.3 Radon Flux

The Corps of Engineers measures radon flux at the NFSS once a year between early to late summer. An effective means of trapping radon gas is activated charcoal. Metal canisters filled with activated charcoal and filter pads are placed on the ground in the morning and collected 24 hours later.

The activated charcoal in the canister adsorbs the radon gas emanating from the surface over which the canister is placed. The charcoal holds the radon, which subsequently decays until equilibrium between radon and its short-lived daughters is established (a minimum of 3 hours). The radon flux is calculated in the laboratory through gamma spectroscopy using the area of canister exposed to the radon flux and the time that exposure took place.

2.3.4 Radon Gas

The Corps of Engineers monitors radon gas concentrations using Radonova Radtrak2® detectors placed around the IWCS and the NFSS. The Radtrak2® detectors are placed on the fence at breathing height (1.7 meters [5.6 feet] above the ground) and replaced every six months. The Radtrak2® detector consists of a small piece of film inside an anti-static plastic container. Radon diffuses through a plastic cover in the container; alpha particles from radon and its decay products strike the film and produce alpha tracks. At the end of the deployment, the detectors are returned to a laboratory for analysis, i.e., the alpha tracks are chemically etched and counted using computer-assisted image analysis equipment. The number of

alpha tracks along with the deployment duration provides the basis for converting calculated radon exposure to the average air concentration.

2.3.5 Gamma Emissions

External gamma radiation is monitored at the NFSS by Landauer optically stimulated luminescent dosimeters (OSLDs) placed around the IWCS and the NFSS at the same locations as the Radtrak2® detectors, at a height of 0.91 meters (3 feet) above the ground. Two OSLDs are placed at each location for quality control. The OSLDs are also replaced every six months.

Optically-stimulated luminescence technology is the newest advancement in passive radiation protection dosimetry; it improves on the best features of traditional film and thermo-luminescent dosimeter (TLD) technologies. The specific OSLDs used at NFSS consist of specially formulated aluminum oxide crystalline detector material; this is configured into a thin strip sandwiched within a multi-element filter pack. The filter pack is heat sealed with a laminated, light-tight paper wrapper, creating an integrated, self-contained packet that is radio-frequency sealed inside a tamper-proof plastic blister pack to eliminate possible mishandling, light leaking, or lost detection elements.

Radiation exposure is measured at the laboratory by stimulating the aluminum oxide crystalline detector material with selected frequencies of laser light; this causes it to luminesce in proportion to the amount of radiation exposure.

3.0 REGULATORY GUIDELINES

The criteria in federal statutes and federal and state regulations and guidelines relevant to activities at NFSS are compared to ESP analytical data. However, the standards and criteria provided herein are for comparative purposes only; applicable or relevant and appropriate requirements and media-specific cleanup goals will be evaluated independently and presented in future CERCLA decision documents that will be available for public comment. Details are provided in the following sections.

3.1 Dose to the Public

The annual public dose limit from sources of radiation (excluding radon) is 100 millirem (mrem) above background. This standard is used by the U.S. Army, the DOE, and the Nuclear Regulatory Commission (NRC). This limit is stated in Army Pamphlet 385-24 entitled *The Army Radiation Safety Program*, DOE Order 458.1 entitled *Radiation Protection of the Public and the Environment* (DOE 2011), and NRC 10 CFR Part 20 entitled *Standards for Protection Against Radiation*.

Doses from sampled media and external gamma can be combined and compared to the public annual dose limit of 100 mrem. For purposes of this document, the maximum off-site dose to a receptor is calculated from the total of the external gamma dose and the internal dose from airborne materials.

3.2 Radioactive Constituents in Air

3.2.1 U.S. Department of Energy Order 458.1

The DOE limits for radon concentrations in air from operations at DOE-owned and -operated facilities are presented in DOE Order 458.1. Based on the radioactive constituents in the wastes contained in the IWCS, it's unlikely that radon-220 would be emitted from the IWCS. This is because the radon-220 half-life is approximately 55.6 seconds; this isotope would decay before it permeated the IWCS cap. It is possible, however, that radon-222 with a half-life of 3.8 days could be emitted. The DOE limit for an annual average radon-222 concentration at the site boundary, not including background, is 3.0 picocuries/liter (pCi/L). To provide a conservative basis for comparison, on-site radon concentrations are evaluated against the site boundary limit of 3.0 pCi/L.

3.2.2 U.S. Environmental Protection Agency Clean Air Act

The EPA guidance action level for radon concentrations in indoor air (homes and buildings) is 4.0 pCi/L. Although this limit is specific to indoor air, it is a conservative basis for comparing the outdoor air results of the environmental surveillance. To compare further, the average radon level in U.S. homes is about 1.25 pCi/L, and the average outdoor value is 0.4 pCi/L (National Council on Radiation Protection and Measurements [NCRP] 2009).

Section 112 of the Clean Air Act authorized the EPA to promulgate the National Emission Standards for Hazardous Air Pollutants (NESHAPs), which are provided in 40 Code of Federal Regulations (CFR) Part 61. The 40 CFR Part 61, Subparts H and Q, apply to the NFSS; they are summarized below:

- 40 CFR 61.92, Subpart H, National Emission Standards for Emissions of Radionuclides Other Than Radon from DOE Facilities: emissions of radionuclides to the ambient air from DOE facilities shall not exceed amounts that would cause any member of the public to receive in any year an effective dose equivalent of 10 mrem.
- 40 CFR 61.192, Subpart Q, National Emission Standards for Radon Emissions from DOE Facilities: no source at a DOE facility shall emit into the air more than 20 picocuries per square

meter per second (pCi/(meter²-sec)) (1.9 pCi/(feet²-sec)) of radon-222 as an average for the entire source.

At the NFSS, the Corps of Engineers complies with 40 CFR 61.92, Subpart H, by running the EPA-approved CAP88-PC air dispersion model with site-specific input values, such as average radionuclide concentrations in soil and average annual wind speed data. Compliance with 40 CFR 61.192, Subpart Q, is verified by annual monitoring of the IWCS cap for radon-222 flux.

3.3 Radioactive and Chemical Constituents in Groundwater

3.3.1 General Groundwater Quality

Shallow groundwater resources at the NFSS demonstrate uniformly poor groundwater quality and availability in the region. Regional studies and studies conducted near the site (La Sala, 1968, Wehran 1977, and Acres American 1981) conclude that local groundwater quality is poor because of high mineralization. Additionally, local studies indicate that the low permeability of the upper water-bearing zone doesn't provide sustainable production quantities to standard wells for water supply use (Wehran 1977 and Acres American, 1981). On-site permeability testing at the NFSS confirms the low permeability.

In 1988, the DOE conducted a well survey; it found eight wells within three miles (4.8 km) of the site. They are used mainly for irrigation; none are drinking water wells (DOE 1994).

In 2007, the Niagara County Department of Health (DOH) updated its well inventory to include nine potable wells (two were a sole source for drinking water), eight nonpotable wells, 20 abandoned wells, and 77 idle wells within the survey area. Based on the DOE report and the recent Niagara County DOH inventory, groundwater isn't the main source of drinking water; however, the New York State Department of Environmental Conservation (NYSDEC) Class GA groundwater standards are conservatively used to compare to ESP groundwater analytical results. Groundwater at the NFSS and surrounding area, in both the upper and lower water-bearing zones, consistently (and naturally) exceeds sodium and sulfate Class GA standards; it exhibits over 1,000 milligrams/liter (mg/L) total dissolved solids and commonly over 250 mg/L of chloride. By definition, these levels indicate that the natural condition of groundwater in the NFSS area is saline and qualifies for the GSA groundwater classification (Title 6 New York Codes, Rules and Regulations (6 NYCRR) Part 701.16).

3.3.2 Federal Safe Drinking Water Act for Chemicals and Radionuclides

The Safe Drinking Water Act (SDWA) is the primary federal law that applies to operating a public water system and developing drinking water quality standards [EPA Drinking Water Regulations and Health Advisories (EPA 1996)]. The regulations in 40 CFR Part 141 (National Primary Drinking Water Regulations) set maximum permissible levels, known as maximum contaminant levels (MCLs), for organic, inorganic, radionuclide (including uranium and combined radium), and microbial contaminants in drinking water.

The established (promulgated) MCL for combined concentrations of radium-226 and radium-228 is 5 pCi/L. The MCL for total uranium is 30 micrograms per liter (µg/L).

3.3.3 New York State Department of Environmental Conservation Groundwater Criteria for Chemicals and Radionuclides

Aside from adopting the federal SDWA standards, the NYSDEC has promulgated its own standards; they are presented in 6 NYCRR Part 703.5, "Water Quality Standards for Taste-, Color- and Odor-producing, Toxic and Other Deleterious Substances" (NYSDEC 1998). The New York State (NYS) limit for radium-226 in groundwater is 3 pCi/L.

Also, the New York State DOH, per 10 NYCRR Part 5, Subpart 5-1, established an MCL of 30 μ g/L for uranium in drinking water that applies to community water systems but doesn't apply to groundwater at the site. Since this limit is identical to the federal criteria, the analytical results discussed in Section 4.0 only reference NYS criteria.

3.4 Radioactive and Chemical Constituents in Sediment

The 2007 NFSS remedial investigation report evaluated sediment analytical data and considered a weight-of-evidence approach to conclude no further actions were needed to protect ecological resources from exposure to site sediment. (No human health impacts were identified either.) Therefore, data collected as part of the ESP will not be compared to regulatory criteria but will be subjected to statistical trend analysis (radionuclides only), e.g., Mann-Kendall test, to ensure that the IWCS is performing as designed.

3.5 Radioactive and Chemical Constituents in Surface Water

The 2007 NFSS remedial investigation report evaluated surface water analytical data and considered a weight-of-evidence approach to conclude no further actions were needed to protect ecological resources from exposure to site surface water. (No human health impacts were identified either.) Therefore, data collected as part of the ESP will not be compared to regulatory criteria but will be subjected to statistical trend analysis (radionuclides only), e.g., Mann-Kendall test, to ensure that the IWCS is performing as designed.

4.0 ANALYTICAL DATA AND INTERPRETATION OF RESULTS

This section presents the 2019 ESP analytical results for groundwater, surface water, sediment, airborne particulate, radon, and gamma radiation. It's important to note that results for radioactive constituents may be expressed as negative numbers. Negative numbers can occur when the average background activity of the laboratory counting instrument exceeds the measured sample activity; background activity is subtracted from the measured sample activity to calculate the result. Also, when results fall below the laboratory's minimum detectable activity (MDA), they are interpreted as having unknown values between zero and the MDA; these are referred to herein as nondetects.

4.1 Air

To establish the annual dose to the public from radiological sources in air, the Corps of Engineers determines doses at specific off-site receptors by combining (1) the calculated external gamma radiation doses based on gamma radiation dose measurements taken at the NFSS perimeter and (2) modeled doses from airborne particulate releases using soil data from the remedial investigation and later field investigations and annual average wind speed.

4.1.1 External Gamma Radiation

OSLDs measure gamma radiation doses at the NFSS but these measurements also include natural sources of background radiation, such as cosmic radiation and terrestrial radiation.¹ To measure background gamma radiation near the NFSS, OSLDs are placed at several locations in the vicinity of the NFSS including Lewiston Porter High School, Balmer Road, and the Lewiston Water Pollution Control Center. At the NFSS, the OSLDs are placed along the property boundary and perimeter of the IWCS (Figure 6). Two OSLDs are placed at each monitoring location as a quality control check and to provide data if an OSLD is lost or a result is rejected. The OSLDs are replaced semi-annually.

Following receipt of the laboratory analytical data, the Corps of Engineers calculates a time-weighted or normalized annual dose that accounts for exposure periods having different integration times (a different number of measurement days). The 2019 results, including both corrected for transit and background, are presented in Table 4. The net dose rate at each OSLD location is used to calculate the annual gamma radiation dose at each of the four property boundaries or perimeter fences, as shown in the table below (background rates are shown for comparison).

Direction	OSLD Locations	Calculated Average Net Dose Rate (mrem/year) ^a
Eastern Perimeter (closest to worker receptor)	45, 50, 55, 65	6.0
Western Perimeter (closest to residential receptor)	8, 10, 11, 13, 15, 29, 36	3.8
Northern Perimeter	1, 11, 12, 60, 65, 122	1.2
Southern Perimeter	7, 28, 29, 45	6.7

^a Net dose rates (corrected for background) for each perimeter are summed and divided by the total number of observations (e.g., 14 for the western perimeter)

-

¹ In the United States, the annual average per capita cosmic and terrestrial radiation doses are 34 millirem per year and 22 millirem per year, respectively (NCRP Report 160)

As indicated in the table above, the calculated average net dose rates at the NFSS perimeter fences ranged from 1.2 to 6.7 mrem/year, which are below the allowable public dose limit of 100 mrem/year above background (see Section 3.1). The average net dose rates at the NFSS perimeter fences used to calculate the hypothetical dose to the nearest worker and residential receptors consider both exposure time and distance. For example, the dose received by a hypothetical industrial worker standing at the eastern perimeter fence over the period of one year is 1.38 mrem/year. Calculation details are as follows:

- The worker stands at the fence for 2,000 hours (8 hours per day, 5 days a week, 50 weeks per year); note that distance is ignored here although the worker would not be at the fence all the time
- 2,000 hours out of a possible 8,760 hours in a year (24 hours in a day, 365 days in a year) represents a fraction of 0.23 (2,000/8,760 hours)
- An industrial worker standing at the eastern perimeter fence where the calculated net dose is 6.0 mrem/year receives a dose of 1.38 mrem/year (6.0 mrem/year multiplied by 0.23)

Trend graphs depicting external gamma dose rates at the NFSS and IWCS perimeters from 1998 thru 2019 are presented on Figures 8 and 9, respectively.

4.1.2 Airborne Particulate Dose

To determine the dose from airborne particulates potentially released from NFSS during 2019, the Corps of Engineers calculates airborne particulate release rates using site soil data (from the remedial investigation initiated in 1999 through field investigations conducted in 2014) and weather data collected at the Niagara Falls International Airport in 2019.

Contributions from radon gas, which is not a particulate, are not considered in this calculation. The total airborne particulate release rate is input into the EPA's CAP88-PC (Version 4.0) computer model to calculate:

- Doses from airborne particulates to individuals of several population age groups in the nearest residence, school, farm, and commercial/industrial facility, as measured from a central location on site. Doses are then corrected for occupancy at an assumed rate, and the individual receiving the higher of these calculated doses is identified as the maximally exposed off-site individual (MEI) for airborne particulate dose.
- Airborne particulate collective dose to the population within 50 miles (80 km) of the site using population data for the United States and Canada from Landscan 2013 Global Population Data from Oak Ridge National Laboratory (Figure 10).

The first calculation indicates that the annual airborne particulate dose to the MEI, an infant resident, 914 meters (2,999 feet) south-southwest of the site, in 2019, was 0.00018 mrem. Consistent with results from previous years, this value is well below the 10 mrem per year standard, individual dose, specified in 40 CFR, Part 61.92, Subpart H.

The second calculation indicates that the annual airborne particulate collective dose to the population within 80 km (50 miles) of the site in 2019 was 0.000394 person-rem. This compares to an annual background dose to the same population of 5,425,000 person-rem. Details of the calculations, including methodology, are presented in the Corps of Engineers' *FUSRAP CY2019 NESHAP Annual Report for Niagara Falls Storage Site (NFSS), Lewiston, New York* (USACE 2020).

4.1.3 Calculated Cumulative Dose

As a conservative measure, the cumulative dose to the MEI, which is calculated by adding the maximum airborne particulate dose to the maximum external gamma dose, is compared to the 100 mrem per year dose limit (excluding radon). The maximum external dose is conservatively estimated to be the dose at the southern perimeter fence (i.e., a resident is assumed to stand at the fence 24 hours a day for 365 days). Based on 2019 data, the cumulative annual dose is 6.7 mrem (0.00018 mrem + 6.7 mrem), which is significantly less than the DOE limit of 100 mrem per year (excluding radon) and the U.S. average per capita background dose of approximately 620 mrem per year (NCRP 2009).

4.1.4 Radon Gas

Radon monitoring at NFSS is performed at a height that represents the human breathing zone (1.7 meters or 5.6 feet above ground level). Radon concentration diminishes significantly as distance from the ground increases and mixing with ambient air takes place.

Based on the radioactive constituents in the wastes contained in the IWCS, it's unlikely that the IWCS would emit radon-220; however, it's possible that it would emit radon-222. The Corps of Engineers uses Radtrak2® detectors to conduct air surveillance to determine the concentration of radon gas at NFSS. These Radtrak2® detectors measure alpha particle emissions from radon-222 and collect passive, integrated data throughout the period of exposure. Because radon-220 isn't a contaminant of concern at NFSS (due to the relatively low concentrations of radium-228 and the short half-life of radon-220), all concentrations are assumed to be radon-222.

Typically, the Corps of Engineers monitors for radon gas semi-annually; however, due to elevated radon flux measurements recorded in September 2019, which is explained in more detail in section 4.1.5, Radtrak2® detectors deployed in July were replaced in October to ensure that there was no increase in radon gas concentrations along the site perimeter. The corresponding surveillance locations are shown on Figure 6.

The results, presented in Table 5, indicate that there was no increase in radon gas at the site perimeter during any of the three monitoring periods in 2019. Consistent with results from previous years, all site radon-222 results from the 2019 ESP were well below the DOE off-site limit of 3.0 pCi/L above background. Results presented are without background subtracted and ranged from nondetect (less than 0.4 pCi/L) to 0.6 pCi/L. The results from the background locations ranged from nondetect (less than 0.4 pCi/L) to 0.5 pCi/L. Including nondetects, the site and background averages are both 0.4 pCi/L, which is equal to the average outdoor value of 0.4 pCi/L (EPA 1993).

4.1.5 Radon-222 Flux

Measurement of radon-222 flux provides an indication of the rate of radon-222 emission from a surface. Radon-222 flux is measured with activated charcoal canisters placed on a grid spaced 15 meters (49.2 feet) on center across the surface of the IWCS for a 24-hour exposure period. Sample locations are shown on Figure 4.

The initial 2019 radon flux event took place on July 8 and 9. Measured results from this event, presented on Table 6A, ranged from nondetect to 23.0501 pCi/m²/s, with an average result (of detects and

-

² The U.S. per capita dose from background radiation has been increased to 620 mrem/person due mainly to increased use of nuclear medical imaging.

nondetects) of 0.2109 pCi/m²/s. Average background flux rate was 0.05148 pCi/m²/s. These results were similar to previous years at most locations, however, the flux result at sample location 65 (23.0501 pCi/m²/s) was higher than past results. Despite being elevated compared to past results, the average of all the data remained below 20 pCi/m²/s, the standard specified in 40 CFR Part 61, Subpart Q.

As part of an investigation to identify the source of the elevated measurement at location 65, the Corps of Engineers requested that the laboratory confirm that the canisters deployed at locations 62 (elevated in 2018) and 65 (elevated in 2019) were not contaminated prior to their use. It is noted that the canisters used by the Corps of Engineers are re-used annually after they are decontaminated by the laboratory. The laboratory tested the canisters and reported their findings of no contamination on September 4, 2019.

On September 6 and October 18, 2019, using 2-inch x 2-inch Nal paired with a geographic positioning unit, the Corps of Engineers performed gamma walkover surveys (GWS) on top of the IWCS in the area where canisters 62 and 65 are located. Located below this area within the IWCS is the eastern wall of Building 411 where the radioactive residues are contained. The GWS identified small localized areas of elevated surface count rates indicative of deposited short-lived radon progeny (e.g., lead-214 and bismuth-214) (Figure 4A). Patches of brown and stressed grass were observed during the GWS in the areas surveyed.

Between October 9 and October 24, 2019, the Corps of Engineers performed additional radon flux sampling at the locations identified in the GWS's as shown on Figure 4A. A total of 15 locations were monitored, including canister locations 47, 62, and 65 and 12 bias locations (B1 through B12) identified during the GWS. Four of the 15 locations were monitored twice. As shown in Table 6B, radon flux at these locations ranged from 0.68 pCi/m²/s at B6 to 243.07 pCi/m²/s at B7. The data demonstrates that isolated areas of the IWCS cover are not effectively mitigating the release of radon-222.

The Corps of Engineers has evaluated strategies to fix the problem and decided to proceed with an iterative approach. First, several inches of topsoil and grass seed will be added in late spring 2020 to the areas where elevated readings and distressed grass were identified, around canister locations 62 and 65 (Figure 4A). The Corps of Engineers believes that enhancing the grass cover will restore optimal moisture to the underlying clay layer that may have developed desiccation cracks or become otherwise more susceptible to gas transport. Once the cover is replaced, radon flux measurements will determine whether this approach has been successful. If radon flux levels are not reduced, the Corps of Engineers will explore ways to repair the underlying clay blanket.

4.2 Surface Water

In 2019, all surface water samples were collected semiannually (2nd and 4th quarters) from nine designated locations. Location SWSD025 is also sampled during 1st and 3rd quarters. For five years (2013 through 2018), location SWSD025 was sampled by an auto-sampler during significant rain events. In late 2018, the auto-sampler experienced mechanical failure and the decision was made to discontinue rain event sampling because the rain event data reflect the same range as quarterly data, neither of which show increasing trends in contaminant concentrations. It is suspected that the rain event data reflect first-flush storm flows that dilute any standing water or groundwater seepage in the Central Drainage Ditch that accumulates between storm flows. Sample locations are presented in Figure 7.

A summary of the surface water sample collection effort is as follows:

- 2nd quarter samples were collected on May 23 and 29, 2019
- 4th quarter samples were collected on October 21 through 23, 2019

- 1st and 3rd quarter samples were also collected from SWSD025 on March 12 and August 28, 2019, respectively
- Analytical parameters included radium-226, total uranium, PAHs, and metals

All surface water samples are measured for turbidity prior to submission to the laboratory for analysis. If turbidity measurements are greater than 50 NTUs, the sample is field filtered, and both the filtered and unfiltered samples are submitted to the laboratory for analysis (applies to radionuclides and metals only). Otherwise, only an unfiltered sample is collected and analyzed.

Details of the findings are presented in the following sections.

4.2.1 Surface Water Field Measurements

Before sampling, the Corps of Engineers measures field parameters at each surface water sampling location using a calibrated water quality meter. Field parameters include temperature, pH, specific conductance, oxidation-reduction potential, turbidity, and dissolved oxygen. The results are summarized on Table 7.

4.2.2 Surface Water Radiological Findings

In general, the 2019 analytical results for radionuclides in surface water, which are presented on Table 8, were comparable to past results. Details are presented in the following sections.

Radium-226

Radium-226 was not detected in 18 of 24 surface water samples, which included two filtered samples. Among the six detections, the concentrations ranged between 0.24 pCi/L (SWSD009) to 2.39 pCi/L, both at SWSD009, and were within the range of historical results.

Radium-226 concentrations in surface water are not subjected to trend analysis (e.g., Mann-Kendall) because reported results are predominantly less than the laboratory detection limit, precluding the accurate assessment of trends. The test loses significant statistical power if most of the data are censored (below detection limits).

Total Uranium

Uranium was detected in all 23 surface water samples collected in 2019, which included two filtered samples. Concentrations ranged from 2.24 µg/L at WWD2 to 12.1 µg/L at SWSD025.

Total uranium concentrations detected in surface water over the course of the Corps of Engineers' ESP (1997 through 2019) are evaluated by the Mann-Kendall test to identify the presence of a statistically significant trend using GSI Mann-Kendall Toolkit software (GSI Environmental 2012). The Mann-Kendall test, described in the Corps of Engineers' Manual Environmental Quality–Environmental Statistics (USACE 2013b), is an accepted method for identifying the presence of a significant trend in surface water.

The GSI Mann-Kendall Toolkit limits the amount of data considered per monitoring location to 40 data points, so if the amount of data exceeds 40, the most recent results are evaluated. In addition, although the GSI Mann-Kendall Toolkit evaluates a data set with as few as four data points, sample sizes of 10 or less are marginal for definitively determining a trend because the test's statistical power increases as the

amount of data evaluated increases.

The GSI Mann-Kendall Toolkit software employs the following statistical metrics to define the concentration trend at each monitoring location:

- *The 'S' Statistic:* Indicates whether concentration trend vs. time is generally decreasing (negative S value) or increasing (positive S value).
- The Confidence Factor (CF): The CF value modifies the S Statistic calculation to indicate the degree of confidence in the trend result, as in 'Decreasing" vs. "Probably Decreasing" or "Increasing" vs. "Probably Increasing." Additionally, if the confidence factor is quite low, due either to considerable variability in concentrations vs. time or little change in concentrations vs. time, the CF is used to apply a preliminary "No Trend" classification, pending consideration of the coefficient of variation (COV).
- The Coefficient of Variation: The COV is used to distinguish between a "No Trend" result (significant scatter in concentration trend vs. time) and a "Stable" result (limited variability in concentration vs. time) for datasets with no significant increasing or decreasing trend (e.g. low CF).

By using the metrics described above, the concentration trend is matched to one of six categories: Increasing, Decreasing, Probably Increasing, Probably Decreasing, Stable, or No Trend. The following table presents the logic used by *GSI Mann-Kendall Toolkit*.

Statistical Metrics Used in GSI Mann-Kendall Toolkit

S Statistic	Confidence In Trend	Trend
S > 0	CF > 95%	Increasing
S > 0	95% ≥ CF≥ 90%	Probably Increasing
S > 0	CF < 90%	No Trend
$S \le 0$	$CF < 90\%$ and $COV \ge 1$	No Trend
$S \le 0$	CF < 90% and COV < 1	Stable
S < 0	$95\% \ge CF \ge 90\%$	Probably Decreasing
S < 0	CF > 95%	Decreasing

Source: Aziz et al. (2003).

The results of the trend evaluation (spring and fall data from 1997 to 2019) of total uranium in surface water are presented in Attachment B-1 and summarized in the table below.

Mann-Kendall Trend Results for Total Uranium in Surface Water

SAMPLE ID	SAMPLE SIZE	RESULTING TREND	LOCATION ALONG DITCH
SAMI LE ID			LOCATION ALONG DITCH
		Central Drainage Ditch	
SWSD009	35	No Trend	Upgradient
SWSD021	34	Probably Decreasing	Upgradient
SWSD023	16	No trend	Upgradient
SWSD010	37	Stable	Midgradient 1
SWSD022	36	No trend	Midgradient 2
SWSD025 ¹	37	Stable	Midgradient 3
SWSD011	36	Probably Increasing	Downgradient
West Drainage Ditch			
WDD2	16	Increasing	Upgradient
WDD3	16	Increasing	Downgradient

¹Only the results from the scheduled sampling events (i.e., not the rain events) are included in the trend analysis (due to the sample set exceeding the maximum allowable 40 data points when all data is considered).

The results indicate fairly stable total uranium concentrations in surface water across the Central Drainage Ditch with no evidence of a statistically increasing or decreasing trend. The most downgradient location in the Central Drainage Ditch, SWSD011, shows evidence of "probably increasing" trend. Both locations sampled along the West Drainage Ditch, WDD2 and WDD3, exhibit "increasing" trends. However, total uranium concentrations in 2019 at all three locations remain low: 7.81 μ g/L and 9.65 μ g/L at SWSD011; 2.24 μ g/L and 3.8 μ g/L at WDD2; and, 2.29 μ g/L and 4.00 μ g/L at WDD3. For comparison, the site-specific background total uranium concentration in surface water developed for use in the remedial investigation was 12.5 μ g/L (USACE 2007).

4.2.3 Surface Water Chemical Findings

The 2019 analytical results for PAHs and metals in surface water are presented in Attachment A as Tables A-1 and A-2, respectively. Trace levels of PAHs were detected, predominantly at upgradient locations. Several metals also were detected in surface water samples. The results were comparable to previous years.

4.3 Sediment

In accordance with the 2019 analytical schedule, the Corps of Engineers collected sediment samples from eight locations in the 2nd and 4th quarters (i.e., semiannually) and one location (SWSD025) in all four quarters (i.e., quarterly). Sampling locations are presented on Figure 7.

A summary of the sediment sample collection effort for 2019 is as follows:

- 2nd quarter samples were collected on May 24, 29, and 30, 2019
- 4th quarter samples were collected on October 22 and 23, 2019
- Location SWSD025 was also sampled on March 13 and August 28, 2019 (1st and 3rd quarters)
- Analytical parameters include radionuclides (radium-226, uranium-234, uranium-235, and uranium-238), metals, and PAHs

Details of the findings are presented in the following sections.

4.3.1 Sediment Radiological Findings

The 2019 analytical results for radionuclides in sediment are presented on Table 9.

Radium-226

The 2019 analytical results for the 19 sediment samples (including one field duplicate sample) analyzed for radium-226 ranged from 0.82 pCi/g (WDD2) to 3.08 (WDD3). These results are similar to historical data, as shown on the graph on Figure 11, which presents radium-226 concentrations in sediment between 1997 and 2019.

Trend analysis of radium-226 in sediment using the *GSI Mann-Kendall Toolkit* shows evidence of an increasing trend at sample locations SWSD010, SWSD023, and SWSD025, a probably increasing trend at locations SWSD009, SWSD011, and WDD2, a stable trend at WDD3, and no trend at locations SWSD021 and SWSD022. Results are summarized below and presented in Attachment B-2.

Mann-Kendall Trend Results¹ for Radium-226 in Sediment

SAMPLE ID	SAMPLE SIZE	RESULTING TREND	LOCATION ALONG DITCH		
	Central Drainage Ditch				
SWSD009	18	Probably Increasing	Upgradient		
SWSD021	18	No trend	Upgradient		
SWSD023	16	Increasing	Upgradient		
SWSD010	18	Increasing	Midgradient 1		
SWSD022	18	No trend	Midgradient 2		
SWSD025	34	Increasing	Midgradient 3		
SWSD011	15	Probably Increasing	Downgradient		
West Drainage Ditch					
WDD2	18	Probably Increasing	Upgradient		
WDD3	18	Stable	Downgradient		

¹Trend evaluation was performed on samples analyzed by gamma spectroscopy (EPA Method 901.1)

It is noted that the predominant source of flow in the Central Drainage Ditch is runoff from Modern's property located east and south of the NFSS; overland flow across the NFSS during storm events is a minor contributor. Stormwater from Modern's landfill is collected in a retention pond (observable on Figure 7) that discharges onto NFSS property via South 31 Ditch at sample location SWSD009. Surface water runoff from Modern's property to the south that is used primarily as parking and storage discharges onto NFSS property via the Central Drainage Ditch at sample locations SWSD021 and SWSD023.

Radium-226 is known to be readily adsorbed to clays and mineral oxides present in sediment, especially near neutral and alkaline pH conditions, so it is usually not a mobile constituent in the environment. Therefore, radium-226 would not be expected to migrate significantly from the area where it is released or generated, and its presence in Central Drainage Ditch sediment likely originated from legacy impacts, adjacent upgradient sources, and/or overland flow. As previously noted, radium-226 concentrations in surface water continue to be predominantly nondetect or less than the laboratory detection limit. The maximum concentration of radium-226 in sediment detected in the Central Drainage Ditch in 2019 was 2.26 pCi/g at location SWSD025. For comparison, the site-specific background concentration developed for the remedial investigation was 2.43 pCi/g (USACE 2007).

Uranium

The 2019 analytical results for uranium isotopes uranium-234, uranium-235 and uranium-238 in sediment showed detections in all but one of the samples collected. Among the detections, the isotopic activity levels ranged from 0.035 pCi/g to 3.62 pCi/g. The isotopic uranium data are similar to historical data. A graphical representation of the analytical data is shown on Figure 12.

Mann-Kendall trend analysis for uranium-238 (used as a surrogate for total uranium) shows evidence of decreasing trends at sample locations SWSD009 and SWSD021; increasing trends at SWSD010, SWSD011, and SWSD025; probably increasing trend at SWSD022; and stable or no trend at SWSD023, WDD2, and WDD3. Based on this data, it appears that uranium concentrations in sediment are increasing in a downgradient path along the Central Drainage Ditch. The highest concentration of uranium-238 detected at any location in 2019 was 3.06 pCi/g (SWSD010), which is slightly less than the site-specific background concentration of 3.08 pCi/g developed for use in the remedial investigation (USACE 2007). Mann-Kendall trend results are summarized below and presented in Attachment B-3.

Mann-Kendall Trend Results¹ for Uranium-238 in Sediment

1744111 110114 110114 11004100 101 C144114111 200 III SUMINUIU					
SAMPLE ID	SAMPLE SIZE	RESULTING TREND	LOCATION ALONG DITCH		
	Central Drainage Ditch				
SWSD009	33	Decreasing	Upgradient		
SWSD021	33	Decreasing	Upgradient		
SWSD023	24	Stable	Upgradient		
SWSD010	34	Increasing	Midgradient 1		
SWSD022	33	Probably Increasing	Midgradient 2		
SWSD025	37	Increasing	Midgradient 3		
SWSD011	33	Increasing	Downgradient		
West Drainage Ditch					
WDD2	24	No trend	Upgradient		
WDD3	24	No trend	Downgradient		

¹Tests were performed using the GSI Mann-Kendall Toolkit

4.3.2 Sediment Chemical Findings

The 2019 analytical results for metals and PAHs in sediment are presented in Attachment A as Tables A-3 and A-4, respectively. Several metals were detected in all sediment samples and several polycyclic aromatic hydrocarbons were detected predominantly at upstream sample locations. The 2019 data were generally comparable to past results.

4.4 Groundwater

There are 55 monitoring wells in the groundwater monitoring program; they are sampled semiannually. Two of these wells, OW04A and OW04B, are also sampled quarterly. Occasionally, additional or replacement wells are sampled when the program wells are dry or will not yield acceptable sample quantity. Well locations are presented on Figure 5. Water levels are measured on a quarterly basis in over 100 wells.

In late 2018, nine monitoring wells that are sampled regularly as part of the ESP were replaced due to damaged components. They include BH49, BH49A, A50, A55, OW13B, OW15B, OW17B, OW18B, and MW953. The new wells were installed at the same locations and at the same depths and are identified as BH49R, BH49AR, A50R, A55R, OW13BR, OW15BR, OW17BR, OW18BR, and MW953R.

Highlights of the groundwater sample collection effort in 2019 are as follows:

- The semiannual sampling took place between May 23 and June 6 (2nd quarter) and October 24 and October 30 (4th quarter); wells OW04A and OW04B were also sampled on March 12 and August 28, 2019.
- 15 groundwater samples were filtered for total U.
- Water level measurements were recorded from over 100 wells.
- Groundwater samples were analyzed for radium-226, total uranium, VOCs (five wells only), and water quality parameters (such as alkalinity and total dissolved solids).

For comparative purposes, the NYSDEC Class GA (groundwater, which is considered potable) water

quality standards (hereafter referred to as NYSDEC drinking water standards) were used. It is noted that groundwater at the NFSS is not a source of drinking water and is naturally a Class GSA saline water.

Details of the findings are presented in the following sections.

4.4.1 Groundwater Level Measurements

In 2019, the Corps of Engineers measured groundwater levels in 104 wells using an electronic depth-to-water meter. Potentiometric data were recorded from 68 wells in the upper water-bearing zone and 36 wells in the lower water-bearing zone. Water level measurements are presented on Table 10. Figures 13 through 16 show the seasonal high and low groundwater elevations in the upper and lower units.

The upper water-bearing zone exists in a fine-grained glacial till that was derived from ice advancement through a pro-glacial lake, where beach ridges were modified into discontinuous sand lenses within the clayey ground mass. The clayey sediments exhibit capillary characteristics that cause non-uniform saturation and desaturation of the upper water-bearing zone during seasonal periods. This variability (texture and saturation) can produce groundwater levels that vary between proximal wells. Groundwater levels imply general groundwater elevations and regional to local flow directions that vary slightly from seasonal high- and low-water conditions in each water-bearing zone. Figures 13 through 16 exemplify the spatial and temporal variability of groundwater levels.

The screened intervals for wells completed in the upper water-bearing zone range from 0.92 to 8.4 meters (3.02 to 27.6 feet) below ground surface; the screened intervals for wells completed in the lower water-bearing zone range from 6.8 to 31.9 meters (22.4 to 104.5 feet) below ground surface.

In the upper water-bearing zone, the depth to water ranged from 0.53 to 6.36 meters (1.73 to 20.85 feet) below ground surface during 2019. The quarterly water level fluctuations in the upper water-bearing zone averaged 0.53 meters (1.75 feet) and showed low and high elevations on August 26, 2019, and May 23, 2019, respectively.

In the lower groundwater system, the depth to water ranged from 0.37 to 3.91 meters (3.34 to 11.34 feet) below ground surface during 2019. Quarterly water level fluctuations in the lower groundwater system averaged 0.30 meters (0.97 feet) and showed low and high elevations also on March 12, 2019, and May 23, 2019, respectively. The lower groundwater system exhibits artesian conditions due to the overlying clay aquitard that confines the zone.

The high-water elevations in the upper system ranged from 94.77 to 97.29 meters (310.90 to 319.12 feet) above mean sea level, whereas the low-water condition ranged from 92.54 to 97.06 meters (303.53 to 318.35 feet). The high-water elevation in the lower system ranged from 94.94 to 96.54 meters (311.41 to 316.64 feet) above mean sea level, whereas the low-water condition ranged from 94.34 to 96.97 meters (309.44 to 318.06 feet).

Water level data indicate that the upper water-bearing zone responds more rapidly to the recharge and discharge seasons (wet and dry periods) than the lower confined groundwater system due to the intervening glacio-lacustrine clay aquitard. The two water-bearing zones demonstrate hydraulic separation through independent water level responses seen in the data (i.e., the range and timing of fluctuations). The high-stress (dry) summer conditions normally lower water levels throughout the upper water-bearing zone, whereas the lower water-bearing zone is much less reactive to seasonal variations due to the aquitard. Upper zone water levels collected during 2019 reflect normal seasonal patterns of a wet spring and dry summer through fall. The lower zone exhibited a continuation of late-2018 low-water levels that rebounded in May 2019 and then minimally varied in fluctuation (averaging 0.30 meters or 0.97 feet).

Vertical gradients calculated using water levels obtained from monitoring well pairs indicate vertical groundwater flow from the upper zone to the lower zone (or downward) is most significant during the midwinter and spring, when evapotranspiration is less robust. Vertical gradients show more upward pressure due to water-level declines in the upper water-bearing zone from midsummer to late fall, when evapotranspiration is robust. This seasonal saturation of the soils and vertical flow variation mitigates the potential transport of contaminants from the upper zone into the lower zone.

4.4.2 Groundwater Field Parameters

Before sampling, the Corps of Engineers measures field parameters at each well using a calibrated water quality meter. Field parameters include temperature, pH, specific conductance, oxidation-reduction potential, turbidity, and dissolved oxygen. The results are summarized on Table 11.

4.4.3 Groundwater Quality Parameters

At the NFSS, water quality in the upper water-bearing zone is indicative of low recharge to a hydraulically slow flow system; this produces poor-quality (near-saline) groundwater with high total dissolved solids and calcium/magnesium sulfates. Water quality in the lower water-bearing zone is poor due to high total dissolved solids. It's likely that the lower groundwater system receives recharge along the base of the Niagara Escarpment, situated approximately 3.2 kilometers (2 miles) south of the site (DOE 1994) and, to a lesser extent, via downward flow from the upper unit. Table 12 presents water quality parameter data for 2019.

Analytical results for sulfate and total dissolved solids were consistently above the NYS Class GA groundwater quality standards, while total alkalinity, chloride, and bromide exceeded NYS standards in a limited number of samples.

Sampling of wells during the remedial investigation confirms that groundwater in the area is naturally saline and of poor quality because of high mineralization (see La Sala 1968; Wehran 1977; Acres American 1981). Groundwater at the NFSS is not used as a public drinking water supply; it is definable as a Class GSA water, although the comparison to the drinking water standards continues to be used as a conservative basis for evaluating the results of groundwater analysis.

4.4.4 Groundwater Radiological Findings

The 2019 analytical results for radium-226 and total uranium in groundwater are presented on Table 13 and discussed in detail below.

Radium-226

Radium-226 was not detected in 99 of the 116 samples (includes two filtered and two field duplicate samples) collected in 2019. Among the 17 detections, radium-226 concentrations were below the NYS drinking water standard of 3 pCi/L and ranged from 0.22 pCi/L to 1.93 pCi/L. The highest activity level was detected in well OW15B, which is screened in the upper water-bearing zone and is situated west of the IWCS.

The range of radium-226 concentrations differentiated by upper and lower water-bearing zones over the last two years is presented in the following table:

Radium-226 Findings 2018 and 2019

Groundwater Zone	Concentr	ation Range
Monitored	2018	2019
Upper water-bearing zone	Nondetect— 0.983 pCi/L	Nondetect—1.93 pCi/L
Lower water-bearing zone	Nondetect— 0.859 pCi/L	Nondetect—1.75 pCi/L

Total Uranium

The 2019 groundwater analytical data showed that total uranium concentrations in 25 groundwater monitoring wells exceeded the uranium drinking water criterion (30 μ g/L). The most elevated total uranium concentrations continue to be detected in wells installed in late 2012 east and south of the IWCS as part of the Balance of Plant field investigation. The two wells with the highest total uranium concentrations in 2019 are MW957 (3,487 μ g/L) and MW951 (3,097 μ g/L), both located south of the IWCS. Among the wells installed in 2012, well MW953 typically exhibits the highest total uranium concentrations; however, well MW953 was replaced just prior to the 2019 sampling event (and is now labeled MW953R) due to a heaved well pad. Total uranium concentrations in well MW953R in 2019 were 376 μ g/L and 277 μ g/L, an order of magnitude lower than historical concentrations. The table below presents a comparison of range of total uranium concentrations detected in groundwater in2018 and 2019.

Total Uranium Findings 2018 and 2019

Groundwater Zone	Concentration Range	
Monitored	2018	2019
Upper water-bearing zone	$4.83 - 8,927 \ \mu g/L$	5.25 – 3,487 μg/L
Lower water-bearing zone	$0.178 - 10.9 \ \mu g/L$	$0.094 - 11.4 \ \mu g/L$

The Corps of Engineers believes the source of uranium in wells east of and across the Central Drainage Ditch from the IWCS is residual soil contamination from former operations in this area; these included a railroad bed, storage piles, and a decontamination pad used during construction of the IWCS. In addition, residual contamination in the sanitary sewer near Manhole 6, which was removed in 2013 as part of the field investigation, may have contributed to groundwater contamination in this area. The Corps of Engineers believes the source of the uranium in wells south of the IWCS is the former storage piles and possibly residual contamination in and around former Building 409. The uranium contamination in these areas, and in other site areas, was produced when the historical residue piles and storage areas leached uranium into the underlying low-permeability soils. Subsequent remediation removed the residue sources and some contaminated soils, whereas the underlying groundwater retained the dissolved uranium impacts. Historical aerial photographs show land scarring in the OW11B area during the time of DOE remediation activities. Also, video footage taken during IWCS construction shows extensive activities, such as equipment decontamination (on and around the decontamination pad) and materials unloading. storage, and loading occurred in this area. The uranium impacts detected in the groundwater collected from recent investigative excavations in the vicinity of OW11B might be associated with those former remediation activities. In addition to advancing five investigative excavations along the sanitary sewer line between South Ditch 31 and the former decontamination pad, 35 delineation soil borings were

advanced in the OW11B area in 2013. The fact that none of these investigation activities identified a source term in this area indicates that the source term, if previously present, had been removed and the current groundwater contamination is the result of the historical movement of residue material in this area

As previously reported, declining to dynamic steady-state (i.e., annually fluctuating about a mean) uranium trends in the majority of wells surrounding the IWCS indicate attenuating legacy sources (i.e., surface stored wastes) that impacted soil and groundwater before and during IWCS construction. Analysis of trends for total uranium in groundwater is discussed in more detail in Section 4.4.6.

4.4.5 Groundwater Chemical Findings

Analysis of VOCs in groundwater is limited to the former Acidification Area in the north-central portion of the site and is monitored by wells 411A, MW934, MW947, MW948, and MW949. All of these wells monitor the upper water-bearing zone except well MW949, which monitors the lower water-bearing zone. These wells were selected to monitor potential migration of the chlorinated solvent plume (i.e., tetrachloroethylene [PCE] and its degradation products). Although not part of the ESP, well MW422 was sampled in the fall as a substitute for well MW947, which had an insufficient volume of water to sample.

Results from the 2019 analysis showed PCE in well MW934 at a concentration of 6 μ g/L, which is slightly greater than the state drinking water standard of 5 μ g/L. PCE was not detected in well MW948, which is nearby and downgradient of well MW934. Several wells also exhibited VOCs that are typical laboratory contaminants (e.g., acetone and chloroform). The analytical results are presented in Table 14.

4.4.6 Groundwater Trend Analysis

Total uranium concentrations in monitoring wells over the course of the Corps of Engineers' ESP (1997 through 2019) are evaluated by the Mann-Kendall test to identify the presence of a statistically significant trend using *GSI Mann-Kendall Toolkit* software (GSI Environmental 2012). It is noted that the sample sizes for some of the wells are 10 or less, which are marginal for definitively determining a trend. The test's statistical power is limited by the sample size of data collected from the wells but as additional data is collected through the surveillance program, the statistical power of the test increases. In addition, the maximum number of data points per monitoring location considered by the *GSI Mann-Kendall Toolkit* is set at 40, so if the amount of data exceeds 40, the most recent results are evaluated.

The results of the trend evaluation indicated no increasing or decreasing trends (i.e., stable or no trend) in total uranium concentrations in 33 of 57 wells analyzed. Decreasing or "Probably Decreasing" trends in total uranium concentrations were identified in 14 wells. Increasing or "Probably Increasing" trends were identified in 10 wells: OW12B, BH49AR, 505, OW04A, OW011A, MW423, MW934, MW954, MW955, and MW958. The results are presented in Attachment B-4 and summarized in the table below.

Well	Sample Size (n)	Resulting Trend
OW03B	20	Stable
OW04B	44	Decreasing
OW05B	20	No trend
OW06B	37	Decreasing
OW07B	25	Stable
OW11B	32	Stable
<i>OW12B</i>	18	Increasing ¹

Mann-Kendall Trend Results for Total Uranium in Groundwater

Well	Sample Size (n)	Resulting Trend
OW13BR	29	Decreasing
OW15BR	35	Stable
OW17BR	35	Decreasing
OW18BR	25	Decreasing
BH49R	18	No trend
BH49AR	24	Probably Increasing ²
A42	35	Decreasing
A43	15	No trend
A45	37	Decreasing
A50R	36	Stable
A55R	18	No trend
505	23	Increasing ³
302A	34	Decreasing
411A	21	Stable
808A	7	No trend
OW03A	20	Stable
OW04A	41	Increasing ⁴
OW05A	21	Stable
OW06A	21	Stable
OW07A	21	Stable
OW11A	20	Probably Increasing ⁵
OW12A	19	Decreasing
OW13A	21	Stable
OW15A	19	Probably Decreasing
OW17A	20	Stable
MW423	9	Probably Increasing ⁶
MW862	21	No Trend
MW863	21	Decreasing
MW921	13	Stable
MW922	10	No trend
MW934	20	Increasing ⁷
MW935	20	Decreasing
MW938	15	Stable
MW943	12	No Trend
MW944	10	Stable
MW945	11	Stable
MW946	11	No trend
MW948	14	Stable
MW949	15	No trend
MW950	16	No trend
MW951	16	Probably Decreasing
MW952	14	Decreasing
MW953R	15	Stable
MW954	14	Probably Increasing ⁸
MW955	15	Increasing ⁹
MW956	15	No trend
MW957	15	No trend
MW958	15	Increasing ¹⁰
MW959	15	No trend
141 44 737	13	110 u chu

Well	Sample Size (n)	Resulting Trend
MW960	15	No trend

- ¹ Total uranium concentrations in OW12B ranged from 17.9 μg/L to 64.2 μg/L.
- ² Total uranium concentrations in BH49AR ranged from 11 μg/L to 23.5 μg/L.
- ³ Total uranium concentrations in 505 ranged from 21.5 μ g/L to 55.5 μ g/L.
- ⁴ Total uranium concentrations in OW04A ranged from 1.32 μg/L to 5.27 μg/L
- ⁵ Total uranium concentrations in OW011A ranged from 1.21 µg/L to 4.14 µg/L.
- ⁶ Total uranium concentrations in MW423 ranged from 10.2 μg/L to 37.8 μg/L.
- ⁷ Total uranium concentrations in MW934 ranged from 19.6 μg/L to 41.1 μg/L.
- ⁸ Total uranium concentrations in MW954 ranged from 218 μ g/L to 724 μ g/L.
- ⁹ Total uranium concentrations in MW955 ranged from 20.3 μ g/L to 42.3 μ g/L.
- ¹⁰Total uranium concentrations in MW958 ranged from 32.2 μg/L to 379 μg/L.

Among the wells exhibiting an increasing or probably increasing trend, only wells OW04A and BH49AR are located proximate and downgradient of the IWCS. Well OW04A is screened in the lower-water bearing zone and well BH49AR is screened in the upper-water bearing zone. Between 2010 and 2019, total uranium concentrations in well BH49AR ranged from 11 μ g/L to 23.5 μ g/L, with concentrations in the fall of 2019 of 18.4 μ g/L (a spring 2019 sample was not collected). Between 2008 and 2019, total uranium concentrations in well OW04A ranged from 1.32 μ g/L to 5.27 μ g/L, with concentrations in 2019 of 3.19 μ g/L, 2.28 μ g/L, 2.03 μ g/L, and 2.40 μ g/L. The cause of these increasing uranium concentrations is likely legacy sources since there is no apparent pattern of increasing uranium concentrations in the area surrounding wells OW04A and BH49AR. For example, well OW04B, the companion well to OW04A that is screened in the upper-water bearing zone, exhibits a decreasing trend. The companion well to BH49AR, well BH49R that is screened in the lower-water bearing zone, exhibits no trend. An adjacent well pair, wells OW03A and OW03B, both exhibit a stable trend.

Uranium concentrations in most upper water-bearing zone wells increase during wet-season periods (winter through spring) and decline during dry-season periods (late spring through fall). This variation is derived from residual low-concentration soil impacts (especially south of the IWCS) and changes in uranium solubility during the wet season, when soil saturation (or groundwater recharge) increases the oxygen content in the subsurface. The seasonal oxygenation of groundwater increases the uranium solubility of pre-existing contamination (soil and pore-water residuals) that increases concentrations in spring-time samples. Water levels decline throughout the summer and fall due to evapotranspiration of rainfall, which increases groundwater temperatures and reduces the oxygen content in groundwater. Iron-reducing bacteria appears to increase during this period, which further reduces oxygen in the soils and groundwater. This seasonal geochemical response promotes uranium adsorption to soil minerals that lowers groundwater concentrations in fall samples. The geochemical cycle of uranium solubility repeats annually in most wells, as seen in the spring and fall sampling data. The seasonal trend may be less evident or slightly opposite in wells with larger sand lenses that produce a delayed or dampened geochemical response in the wells.

Trend analysis for radium-226 concentrations (pCi/L) in groundwater was not performed because concentrations over the course of the Corps of Engineers ESP (1997 through 2019) are predominantly less than the laboratory detection limit, precluding the accurate assessment of trends. The test loses significant statistical power if most of the data are censored.

5.0 CONCLUSION

The objective of the ESP is to monitor the air, groundwater, surface water, and sediment for the release of contaminants to ensure the protection of human health and the environment. To achieve this objective, the Corps of Engineers:

- Measures radon gas concentrations at several locations around the property boundary and radon flux on top of the IWCS
- Calculates the annual cumulative dose to the nearest receptor from NFSS sources based on (1) measured total external gamma radiation and (2) modeled airborne particulate dose using remedial investigation soil data and annual meteorological data
- Analyzes surface water and sediment samples for radionuclides (as well as metals and PAHs to monitor potential impact from off-site sources such as Modern Landfill)
- Analyzes groundwater samples for radionuclides and VOCs in a limited area of the site

The results of the 2019 radon flux monitoring showed an elevated flux measurement at canister location 65. Canister 65 is situated approximately 50 feet from Canister 62 that exhibited an elevated flux measurement in 2018. To investigate, the Corps of Engineers performed a GWS on top of the IWCS in the area of canister locations 62 and 65. The GWS identified small localized areas of elevated radioactivity. The area of concern identified by elevated flux and GWS data is located above the eastern wall of Building 411 that contains radioactive residues in the IWCS. The Corps of Engineers has evaluated strategies to fix the problem and decided to proceed with an iterative approach. First, several inches of topsoil and grass seed will be added in late spring 2020 to the areas where elevated readings and distressed grass were identified, around canister locations 62 and 65. The Corps of Engineers believes that enhancing the grass cover will restore optimal moisture to the underlying clay layer that may have developed desiccation cracks. Once the cover is replaced, radon flux measurements will determine whether this approach has been successful. If radon flux levels are not reduced, the Corps of Engineers will explore ways to repair the underlying clay blanket.

Based on the regulatory compliance data collected in 2019, the Corps of Engineers has demonstrated that the site is compliant with regulatory criteria and remains protective of human health and the environment. The average radon flux across the IWCS measured during the annual monitoring event performed in July 2019 remained below 20 pCi/m²/s, the standard specified in 40 CFR Part 61, Subpart Q, and radon-222 concentrations measured at the site boundary were well below 3.0 pCi/L the DOE limit for annual average radon-222 concentrations, not including background.

A summary of the 2019 trend evaluations for total uranium in surface water and uranium-238 and radium-226 in sediment are presented in the following table:

100	ATION	SURFACE WATER ¹	SEDIN	MENT
LOC	ATION	Total uranium	Uranium-238	Radium-226 ³
		Central Drainage Dit	ch	
SWSD009	Upgradient	No trend	Decreasing	Probably
				Increasing
SWSD021	Upgradient	Probably Decreasing	Decreasing	No trend
SWSD023	Upgradient	No trend	Stable	Increasing
SWSD010	Midstream	Stable	Increasing	Increasing
SWSD022	Midstream	No trend	Probably	No trend
			Increasing	
SWSD025	Midstream	Stable	Increasing	Increasing
SWSD011 ²	Downgradient	Probably Increasing	Increasing	Probably
				Increasing
		West Drainage Ditcl	h	
WDD2	Upgradient	Increasing	No trend	Probably
				Increasing
WDD3	Downgradient	Increasing	No trend	Stable

¹ Radium-226 concentrations in surface water are not evaluated for trending because concentrations are either nondetect or predominantly less than the laboratory detection limit, precluding the accurate assessment of trends.

Three (SWSD011, WDD2, and WDD3) of the nine surface water sample locations show evidence of an increasing or probably increasing trend for total uranium. Similar to the previous year, total uranium concentrations at these locations remain low: $2.24~\mu g/L$ and $3.80~\mu g/L$ at WDD2; $2.29~\mu g/L$ and $4.4~\mu g/L$ at WDD3; and, $7.81~\mu g/L$ and $9.65~\mu g/L$ at SWSD011. For comparison, the site-specific background total uranium concentration in surface water developed during the remedial investigation was $12.5~\mu g/L$ (USACE 2007).

The trend analysis shows uranium-238 concentrations in sediment increasing in a downgradient path along the Central Drainage Ditch. However, the highest concentration of uranium-238 detected at any location in 2019 was 3.06 pCi/g (SWSD010), which is less than the site-specific background concentration of 3.08 pCi/g reported in the remedial investigation (USACE 2007).

The maximum concentration of radium-226 in sediment detected in the Central Drainage Ditch in 2019 was 2.26 pCi/g at location SWSD025. For comparison, the site-specific background concentration developed for the remedial investigation was 2.43 pCi/g (USACE 2007). Radium-226 is known to be readily adsorbed to clays and mineral oxides present in sediment, especially near neutral and alkaline pH conditions, so it is usually not a mobile constituent in the environment. Therefore, radium-226 would not be expected to migrate significantly from the area where it is released or generated. Radium-226 concentrations in surface water continue to be predominantly nondetect or less than the laboratory detection limit.

The 2019 groundwater analytical data showed that total uranium concentrations in 25 groundwater monitoring wells exceeded the uranium drinking water criterion (30 μ g/L). The most elevated total uranium concentrations continue to be detected in wells installed in late 2012 east and south of the IWCS as part of the Balance of Plant field investigation. The Corps of Engineers believes the source of uranium in wells east of the IWCS is residual soil contamination from former operations in this area, which included a

² SWSD011 is the most downgradient sampling location on the Central Drainage Ditch and the point at which surface water flows off-site.

³ Trending tests were performed on samples analyzed by gamma spectroscopy (EPA Method 901.1)

railroad bed, storage piles, and a decontamination pad used during construction of the IWCS. In addition, residual contamination in the sanitary sewer near Manhole 6, which has been removed and the sewer line plugged, may have contributed to groundwater contamination in this area. The Corps of Engineers believes the former storage piles and residual contamination from former Building 409 are the source of the uranium in wells south of the IWCS (USACE 2015a). The uranium contamination in groundwater south of the IWCS, and in other site areas, was produced when the historical residue piles and storage areas leached uranium into the underlying low-permeability soils. Subsequent remediation removed the residue sources and some contaminated soils, whereas the underlying groundwater retained the dissolved uranium impacts.

Trend analysis shows increasing or "probably increasing" trends in 10 of 57 wells evaluated. Among the 10 wells, only two wells, OW04A and BH49AR, are located proximate to the IWCS. The cause of these increasing uranium concentrations is likely legacy sources since there is no apparent trend pattern of increasing uranium concentrations when considering either their respective paired wells (OW04B and BH49R) or nearby wells.

It is noted that uranium concentrations normally increase during wet-season periods (winter through spring) and decline during dry-season periods (late spring through fall), which is evident to varying degrees in many upper water-bearing zone wells. This variation is due to a combination of residual low-concentration soil impacts (especially south of the IWCS) and changes in uranium solubility during seasonal soil saturation (or groundwater recharge) that increases the oxygen content in the subsurface. The seasonal oxygenation of groundwater increases the uranium solubility of pre-existing contamination, and thus increases concentrations in spring-time samples. Water levels decline throughout the summer and fall due to evapotranspiration of rainfall, which increases groundwater temperatures and reduces the oxygen content in groundwater. Iron-reducing bacteria samples also increase during this period. This geochemical mechanism lowers uranium solubility, promotes uranium adsorption to soil minerals, and lowers groundwater concentrations in fall samples. This geochemical process repeats annually, as seen in the spring and fall sampling data. This trend may be less evident or absent in wells with larger sand lenses, but is commonly evident in upper water-bearing zone wells.

6.0 REFERENCES

- Acres American, Inc., 1981. *Hydrologic and Geologic Characterization of the U.S. DOE-Niagara Falls Storage Site*, Buffalo, New York, September.
- Argonne National Laboratory, 2012. Preliminary Evaluation of Health Effects for Hypothetical Exposures to Contaminants from the Interim Waste Containment Structure Technical Memorandum, February.
- Aziz, J.J., M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, 2003. MAROS: A Decision Support System for Optimizing Monitoring Plans. Ground Water 41(3): 355-367.
- Department of Defense, Revision 1.0, 2013. Environmental Field Sampling Handbook, April.
- EA (EA Engineering, Science, Technology), 1998. History Search Report, Lake Ontario Ordnance Works (LOOW), Niagara County New York, August.
- GSI Environmental, 2012. GSI Mann-Kendall Toolkit for Constituent Trend Analysis, Version 1, November.
- La Sala, A.M. Jr., 1968. Ground-Water Resources of the Erie-Niagara Basin, New York, State of New York Conservation Department, Water Resources Commission, Basin Planning Report ENB-3.
- National Council on Radiation Protection and Measurements (NCRP), 2009. NCRP REPORT No. 160, Ionizing Radiation Exposure of the Population of the United States.
- New York State Department of Environmental Conservation (NYSDEC), 1994. Memorandum from Michael J. O'Toole to the Regional Hazardous Waste Remediation Engineers, Bureau Directors and Section Chiefs, Division of Technical and Administrative Guidance, Memorandum: Determination of Soil Cleanup Objectives and Cleanup Levels, January 24.
- NYSDEC, 1998. Codes of Rules and Regulations of the State of New York (NYCRR); Title 6, Department of Environmental Conservation; Chapter X, Division of Water Resources; Subchapter A, General; Part 703, Surface Water and Groundwater Quality Standards and Groundwater Effluent Standards. NYSDEC Water-Quality Regulations, August.
- USACE, 1999. Engineering Manual 1110-2-1421, Groundwater Hydrology.
- USACE, 2007, (Science Applications International Corporation (SAIC) and Tetra Tech). *Remedial Investigation Report for the NFSS*, December. https://www.lrb.usace.army.mil/Missions/HTRW/FUSRAP/Niagara-Falls-Storage-Site/
- USACE, 2008. Environmental Quality: Environmental Statistics, App. Q: Trend Analysis, USACE EM 1110-1-4014, January. http://140.194.76.129/publications/eng-manuals/em1110-1-4014/
- USACE, 2011, SAIC, NFSS Remedial Investigation Report Addendum, April. https://www.lrb.usace.army.mil/Missions/HTRW/FUSRAP/Niagara-Falls-Storage-Site/
- USACE, 2013a. Balance of Plant Operable Unit Field Investigation, Niagara Falls Storage Site, Lewiston, New York, Prepared by URS Group, Inc., August.

- USACE, 2013b. Engineer Manual: Environmental Quality Environmental Statistics, May.
- USACE, 2015a. Field Investigation Report Balance of Plant Operable Unit, Investigation to Refine the Extent of Soil Contamination, February.
- USACE, 2015b. Feasibility Study Report for the Interim Waste Containment Structure at the Niagara Falls Storage Site, December.
- USACE, 2015c. Proposed Plan Interim Waste Containment Structure Operable Unit, December.
- USACE, 2017. Record of Decision Interim Waste Containment Structure Operable Unit, March.
- USACE, 2019a. Feasibility Study for Balance of Plant and Groundwater Operable Units, October.
- USACE, 2020, FUSRAP CY2019 NESHAP Annual Report for Niagara Falls Storage Site (NFSS), Lewiston, New York, June.
- U.S. DOE, 1994. *Niagara Falls Storage Site Failure Analysis Report*, Oak Ridge, Tennessee, December.
- U.S. DOE, 1996a. Standards/Requirements Identification Document, Formerly Utilized Sites Remedial Action Program, April.
- U.S. DOE, 1996b. Letter from L. K. Price (Director, FSRD) to P. A. Giardina (Radiation Branch, U.S. EPA Region II), Status of Radon Flux Monitoring (NESHAPs Subpart Q) at Three Department of Energy Sites in U.S. EPA Region II, CCN 143772, July 1.
- U.S. DOE, 2013. Change 3: 6-06-11, DOE Order 458.1, Radiation Protection of the Public and the Environment.
- U.S. DOE, 2012. Assessment of Historical Knolls Atomic Power Laboratory Waste Storage Locations, Niagara Falls Storage Site, FUSRAP Site, Lewiston, New York, LMS/NFS/S06763, Office of Legacy Management, February.
- U.S. EPA, 1986. *Guidelines for Ground-Water Classification under the EPA Ground-Water Protection Strategy*, U.S. EPA/440/6-86-007.
- U.S. EPA, 1987. A Compendium of Superfund Field Operations Methods, U.S. EPA/540/P-87/001 (August). U.S. EPA, 2007. Users Guide for Version 3.0, CAP88-PC, March.
- U.S. EPA, 1992. RCRA Groundwater Monitoring: Draft Technical Guidance, U.S. EPA/530/R-93/001, Office of Solid Waste, November.
- U.S. EPA, Revision 1, 1996. *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods*, SW-846, September.
- U.S. EPA, 1993. *Radon A Physician's Guide: The Health Threat With A Simple Solution*, 402-K-93-008, September.
- U.S. EPA, 1995. Letter from Tara O'Toole (Assistant Secretary, Environment, Safety and Health) to

- Distribution, Memorandum of Understanding with the Environmental Protection Agency Concerning the Radionuclide National Emission Standards for Hazardous Air Pollutants, CCN 130813, April 5.
- U.S. EPA, 1996. *Drinking Water Regulations and Health Advisories*, U.S. EPA-822-R-96-001, Office of Water, February.
- U.S. EPA, 2000. *National Primary Drinking Water Regulations; Radionuclides; Final Rule*, Federal Register Vol.65, No. 236, December.
- U.S. EPA, 2005. Uniform Federal Policy for Quality Assurance Project Plans, EPA 505/B-04-900A, March.
- U.S. EPA, 2009. Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities Unified Guidance, EPA 530/R-09-007. http://www.epa.gov/osw/hazard/correctiveaction/resources/guidance/sitechar/gwstats/index.htm
- U.S. EPA 2015. ORD Site Characterization and Monitoring Technical Support Center, EPA/600/R-07/041.
- U.S. EPA, 2016. Regional Screening Levels Generic Tables, June. https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables-november-2015
- Wehran Engineering Corporation, 1977. Hydrogeologic Investigation: Chem-trol Pollution Services, Inc., Townships of Porter and Lewiston, Niagara County, New York.

2019 N	Jiagara F	alls S	Storage	Site	Environme	ntal Surv	veillance	Techn	ical N	Memoran	dun

TABLES

Acronyms and Abbreviations (in Tables)

BKGD background
CY calendar year
DO dissolved oxygen
DOE Department of Energy
°F degrees Fahrenheit.

IWCS Interim Waste Containment Structure

J data estimated

LWBZ lower water bearing zone
MDA method detection activity
MDL method detection limit
MCL maximum contaminant level
MG/KG milligrams per kilogram
MG/L milligrams per liter

mrem millirem

mrem/yr millirem per year

mS/cm milliSiemens per centimeter

mV millivolts NA not applicable

NFSS Niagara Falls Storage Site NTU nephelometric turbidity units

NYCRR New York Codes, Rules, and Regulations

NYS New York State

NYSDOH New York State Department of Health

ORP oxidation-reduction potential OSL optically stimulated luminescence

OSLD optically stimulated luminescence dosimeter

PCI picocurie

PCI/G picocuries per gram PCI/L picocuries per liter pCi/L picocuries per liter

pCi/m²/s picocuries per meters-squared per second

PAH polycyclic aromatic hydrocarbon

PCB polychlorinated biphenyl

R data rejected

RI remedial investigation
RSL regional screening level
SDWA Safe Drinking Water Act
Spec. Cond. Specific conductance
TDS total dissolved solids

TLD thermo luminescent dosimeter

U not detected

UG/L microgram per liter

VOC volatile organic compound

Table 1 Continued: Evolution of NFSS Environmental Surveillance Plan

Parameter	1997	2000	2003	2008	2009	2010	2013	2014
Surface water:	SWSD009, SWSD010, SWSD011, SWSD021,		Same 5 locations	Same 5 locations plus 5 additional	Same 10 locations	Spring 2010 - Same 10 locations	9 locations (removed	9 locations (removed SWSD024 and WDD1)
	SWSD011, SWSD021,			locations: SWSD023,		as 2009	SWSD024 and	SWSD024 and WDD1)
	3443D022			SWSD024, WDD1,			WDD1)	
				WDD2, WDD3.		11 locations (Added location	11001)	
						SWSD025)		
	Field Parameters:	Field Parameters:	Field Parameters:	Field Parameters:	Field Parameters:	Field Parameters:	Field Parameters:	Field Parameters:
	Dissolved oxygen,	Same	Same	Same	Same	Same	Same	Same
	redox potential,							
	turbidity, temperature,							
	specific conductivity,	De die eee dide ee	D - 4" 1" 0	Dark and Balance	De die eee lide ee	De die modiale m	Dadianalidaa	Dedicarralidas
	pH Dadianualidasi	Radionuclides:	Radionuclides: Same		Radionuclides:		Radionuclides:	Radionuclides:
	Radionuclides:	Uranium-234, -235,		Uranium-234, -235,	Same	Iso-uranium, Iso-thorium,	Total Uranium	Total Uranium Radium- 226
	total uranium radium- 226, -228	-238 radium-226, -228		-238, radium-226, -228 thorium-228 (new),		Radium-226, -228 Strontium- 90, Technetium-99, Cesium-	Radium-220	220
	thorium-230, -232	thorium-230, -232		-230, -232		137, Iso-plutonium, Tritium		
	uioiiuiii-230, -232	110110111-230, -232		-230, -232		137, 130-piutoriium, mitum		
				Metals:	Metals:	Metals:	Metals:	Metals:
				TAL metals, lithium,	Same	Same	Same	Same
				boron				
				Organics:	Organics:	Organics:	Organics:	Organics:
				PCBs, pesticides,	Same		PAHs only	PAHs only
				VOCs, PAHs			-	
Sediment:	SWSD011,	Same 5 locations	Same 5 locations	Same 5 locations	Same 10 locations	Spring 2010 -	9 locations	9 locations
	SWSD021,			plus 5 additional		Same as 2009	(removed	(removed
	SWSD010,			locations: WDD1,		- u 00 40	SWSD024 and	SWSD024 and
	SWSD022,			WDD2, WDD3,		Fall 2010:	WDD1)	WDD1)
	SWSD009			SWSD023, SWSD024				
	Radionuclides:	Radionuclides:	Radionuclides:	Radionuclides:	Radionuclides:	Radionuclides:	Radionuclides:	Radionuclides:
	total uranium	Uranium-234, -235,	Same	Uranium-234, -235,	Same	Iso-uranium,	Total Uranium	Total Uranium
	radium-226, -228	-238	Carrie	-238	Carrio	Iso-thorium.	Radium-226	Radium-226
	thorium-230, -232	radium-226, -228		radium-226, -228		Radium-226, -228	Tadium 220	radiani 220
		thorium-230, -232		thorium-228 (new),		Strontium-90,		
		,		-230, -232		Technetium-99,		
						Cesium-137,		
						Iso-plutonium,		
						Tritium		
				Metals:	Metals:	Metals:	Metals:	Metals:
				TAL metals, lithium,	Same	Same	Same	Same
				boron				
				Organics:	Organics:	Organics:	Organics:	Organics:
				PCBs, pesticides,	Same	Same	PAHs only	PAHs only
		İ		VOCs, PAHs				

Table 2 **2019 ESP**

Groundwater Sampling

Niagara Falls Storage Site

ĭ	UWBZ or LWBZ			*Laborate	ory Analytical	Parameters	1		**Field
Well Location	Well	Purpose	Total Uranium	Radium -226	VOCs	Alkalinity	TDS	Anions	Parameters
A45	UWBZ	N (IWCS)	X	X		X	X	X	X
OW04A ¹	LWBZ	N (IWCS)	X	X		X	X	X	X
OW04B ¹	UWBZ	N (IWCS)	X	X		X	X	X	X
BH49AR	UWBZ	N (IWCS)	X	X		X	X	X	X
BH49R	LWBZ	N (IWCS)	X	X		X	X	X	X
OW05A			X	X		X	X	X	X
OW05B	LWBZ	N (IWCS)	X	X		X	X	X	X
	UWBZ	N (IWCS)					X	X	
A50R	UWBZ	E (IWCS)	X	X		X			X
MW862	UWBZ	E (IWCS)	X	X		X	X	X	X
MW863	LWBZ	E (IWCS)	X	X		X	X	X	X
OW11A	LWBZ	E (IWCS)	X	X		X	X	X	X
OW11B	UWBZ	E (IWCS)	X	X		X	X	X	X
OW12A	LWBZ	E (IWCS)	X	X		X	X	X	X
OW12B	UWBZ	E (IWCS)	X	X		X	X	X	X
OW06A	LWBZ	S (IWCS)	X	X		X	X	X	X
OW06B	UWBZ	S (IWCS)	X	X		X	X	X	X
OW13A	LWBZ	S (IWCS)	X	X		X	X	X	X
OW13BR	UWBZ	S (IWCS)	X	X		X	X	X	X
OW07A	LWBZ	S (IWCS)	X	X		X	X	X	X
OW07B	UWBZ	S (IWCS)	X	X		X	X	X	X
OW07B OW03A	LWBZ	W (IWCS)	X	X		X	X	X	X
OW03A OW03B	UWBZ	W (IWCS)	X	X		X	X	X	X
		` ′							
OW15A	LWBZ	W (IWCS)	X	X		X	X	X	X
OW15BR	UWBZ	W (IWCS)	X	X		X	X	X	X
A42	UWBZ	W (IWCS)	X	X		X	X	X	X
OW17A	LWBZ	W (IWCS)	X	X		X	X	X	X
OW17BR	UWBZ	W (IWCS)	X	X		X	X	X	X
OW18BR	UWBZ	W (IWCS)	X	X		X	X	X	X
A55R	LWBZ	W (IWCS)	X	X		X	X	X	X
A43	UWBZ	W (IWCS)	X	X		X	X	X	X
505	UWBZ	EU 1	X	X		X	X	X	X
MW934	UWBZ	EU 4	X	X	X	X	X	X	X
411A	UWBZ	EU 4	X	X	X	X	X	X	X
302A	UWBZ	EU 8	X	X		X	X	X	X
			X	X		X	X	X	X
MW921 or MW922 ²	UWBZ	NW (off-site)	X	X		X	X	X	X
MW 935	UWBZ	NW (IWCS)							
MW938	UWBZ	NW (IWCS)	X	X		X	X	X	X
MW-943	UWBZ	S (IWCS)	X	X		X	X	X	X
MW-944	UWBZ	EU 1	X	X		X	X	X	X
MW-945	UWBZ	EU 1	X	X		X	X	X	X
MW-946	UWBZ	EU 1	X	X		X	X	X	X
MW-947 ³	UWBZ	EU 4	X	X	X	X	X	X	X
MW-948	UWBZ	EU 4	X	X	X	X	X	X	X
MW-949	LWBZ	EU 4	X	X	X	X	X	X	X
MW-950	UWBZ	S (IWCS)	X	X		X	X	X	X
MW-951	UWBZ	S (IWCS)	X	X		X	X	X	X
MW-952	UWBZ	E (IWCS)	X	X		X	X	X	X
MW-953R	UWBZ	E (IWCS)	X	X		X	X	X	X
MW-953K MW-954		` ′	X	X		X	X	X	X
	UWBZ	E (IWCS)	X	X		X	X	X	X
MW-955	UWBZ	E (IWCS)							
MW-956	UWBZ	S (IWCS)	X	X		X	X	X	X
MW-957	UWBZ	S (IWCS)	X	X		X	X	X	X
MW-958	UWBZ	S (IWCS)	X	X		X	X	X	X
MW-959	UWBZ	S (IWCS)	X	X		X	X	X	X
MW-960	UWBZ	S (IWCS)	X	X		X	X	X	X
Field Duplicate	-	i	X	X		X	X	X	X
*Laboratory Analytica	al Parameters		**Field Paramet	ers:					

VOC - Volatile Organic Compounds

TDS - Total Dissolved Solids Anions: Chloride

Fluoride Oxidation-Reduction Potential Dissolved oxygen Nitrate

pН

Temperature

Specific conductivity

(If the turbidity reading for a sample is 50 NTUs or greater, the sample will Nitrite Turbidity Phosphate be filtered in the field and both filtered and unfiltered samples at that

location will be submitted to the lab for analysis.)

Sulfate

UWBZ - upper water bearing zone LWBZ - lower water-bearing zone

> indicates new well (Spring 2013) indicates not sampled

¹ These wells are sampled quarterly

 $^{^2\,\}mbox{MW921}$ or MW922 is sampled based on availability of water within these wells

³MW422 or MW423 is substituted for MW947 when well MW947 is dry.

Table 3

2019 ESP Surface Water and Sediment Sampling Niagara Falls Storage Site

*L	*Laboratory Analytical Parameters													
Sample Location	Total Uranium	Radium-226	Metals	PAHs	**Field Parameters									
SWSD009	X	X	X	X	X									
SWSD010	X	X	X	X	X									
SWSD011	X	X	X	X	X									
SWSD021	X	X	X	X	X									
SWSD022	X	X	X	X	X									
SWSD023	X	X	X	X	X									
SWSD025 ¹	X	X	X	X	X									
WDD2	X	X	X	X	X									
WDD3	X	X	X	X	X									
Field Duplicate	X	X	X	X	X									

*Laboratory Analytical Parameters:

PAH - Polyaromatic Hydrocarbons

**Field Parameters:

pН

Temperature

Specific conductivity

Oxidation-Reduction Potential

Dissolved oxygen

Turbidity

(If the turbidity reading for a sample is 50 NTUs or greater, the sample will be filtered in the field and both filtered and unfiltered samples at that location will be submitted to the lab for analysis.)

¹ Sampled quarterly

Table 4 2019 External Gamma Radiation Dose Rates Niagara Falls Storage Site

Monitoring	Monitoring	Gross ^a OSL Data (mrem/monitoring period)	Gross ^a OSL Data (mrem/monitoring period)	Normalized Gross OSL	CY2019 Net ^d OLD Data
Location	Station	12/30/2018-6/29/2019	7/2/2019-1/2/2020	Data ^b (mrem/yr)	(mrem/yr)
	1	11.0	9.0	20.0	0.8
	1	9.0	12.0	21.0	1.8
	7	13.0	12.0	25.0	5.8
	7	11.0	12.0	23.0	3.8
	11	6.0	8.0	14.0	-5.2
	11	4.0	9.0	13.0	-6.2
	12	10.0	10.0	20.0	0.8
	12	9.0	11.0	20.0	0.8
	13	12.0	12.0	24.0	4.8
	13	14.0	13.0	27.0	7.8
	15	12.0	12.0	24.0	4.8
	15	12.0	14.0	26.0	6.8
	28	17.0	16.0	33.0	13.8
	28	15.0	15.0	30.0	10.8
	29	13.0	13.0	26.0	6.8
	29	11.0	17.0	28.0	8.8
NFSS Perimeter	32*	11.0	12.0	23.0	3.8
NI BB I crimeter	32*	12.0	10.0	22.0	2.8
	36	12.0	15.0	27.0	7.8
	36	14.0	15.0	29.0	9.8
	45	9.0	12.0	21.0	1.8
	45	11.0	10.0	21.0	1.8
	50	16.0	18.0	34.0	14.8
	50	17.0	16.0	33.0	13.8
	55	10.0	13.0	23.0	3.8
	55	9.0	13.0	22.0	2.8
	60	12.0	11.0	23.0	3.8
	60	12.0	12.0	24.0	4.8
	65	9.0	15.0	24.0	4.8
	65	9.0	14.0	23.0	3.8
	122	9.0	10.0	19.0	-0.2
	122	13.0	11.0	24.0	4.8
	123	11.0	15.0	26.0	6.8
	123	11.0	15.0	26.0	6.8
	8	8.0	11.0	19.0	-0.2
	8	7.0	10.0	17.0	-2.2
	10	11.0	11.0	22.0	2.8
	10	11.0	15.0	26.0	6.8
	18	12.0	7.0	19.0	-0.2
	18	8.0	8.0	16.0	-3.2
IWCS Perimeter	21	8.0	9.0	17.0	-2.2
·	21	7.0	14.0	21.0	1.8
	23	8.0	11.0	19.0	-0.2
	23	9.0	11.0	20.0	0.8
	24	9.0	12.0	21.0	1.8
	24	9.0	13.0	22.0	2.8
	40	9.0	8.0	17.0	-2.2
	40	8.0	10.0	18.0	-1.2
	105	6.0	7.0	13.0	
	105	6.0	7.0	13.0	
Background ^c	116 116	11.0 9.0	9.0 11.0	20.0 20.0	
	120	9.0	13.0	24.0	
	120	12.0	13.0	25.0	
Average Ba		9.2	10.0	19.2	
		ynagura Transit aynaguras ara		·	

Gross refers to total deployment exposure. Transit exposures are subtracted as the mean of the two USACE-assigned control

b Gross data for each period are normalized to a daily dose rate, averaged, and then normalized for the length of the year (365 days).

c Background Locations: 105-Lewiston-Porter School, 116-Balmer Road and 120-Lewiston Water Pollution Control Center

d Net data are corrected by subtravting the average normalized background value

^{*} Location 32 is a duplicate sample for location 12.

Table 5
2019 Radon Gas Concentrations^a

	G	Average Daily Concentration	Average Daily Concentration	Average Daily Concentration
Monitoring	Station	(pCi/L)	(pCi/L)	(pCi/L)
Location ^b		1/03/19 - 07/01/19 ^c	7 /01/19 - 10/09/19 ^c	10/09/19 - 1/02/20 ^c
	1	< 0.4	< 0.4	< 0.4
	7	< 0.4	< 0.4	< 0.5
	11	< 0.4	< 0.4	< 0.4
	12	< 0.4	< 0.4	0.6 ± 0.2
	12 (dup ^d)	< 0.4	< 0.4	< 0.5
	13	< 0.4	< 0.4	< 0.5
NFSS	15	< 0.4	< 0.4	< 0.4
Perimeter	28	< 0.4	< 0.4	< 0.4
	29	< 0.4	< 0.4	< 0.5
	36	< 0.4	0.4 ± 0.3	< 0.4
	45	< 0.4	< 0.4	< 0.5
	50	< 0.4	0.4 ± 0.3	< 0.4
	55	< 0.4	< 0.4	< 0.4
	60	< 0.4	< 0.4	< 0.4
	65	< 0.4	< 0.4	< 0.4
	122	< 0.4	0.5 ± 0.3	< 0.4
	123	< 0.4	< 0.4	< 0.5
	8	< 0.4	0.5 ± 0.3	< 0.4
	10	< 0.4	< 0.4	0.6 ± 0.3
IWCS	18	< 0.4	< 0.4	< 0.4
Perimeter	21	< 0.4	< 0.4	< 0.4
	23	< 0.4	< 0.4	< 0.4
	24	< 0.4	< 0.4	< 0.4
	40	< 0.4	< 0.4	< 0.5
	105	< 0.4	< 0.4	< 0.4
Background	116	< 0.4	< 0.4	0.5 ± 0.2
	120	< 0.4	< 0.4	< 0.4

- a. Radon gas concentrations were measured with RadTrak2® detectors These detectors measure the concentration of radon-222 in air.
- b. Monitoring locations are shown on Figure 6.
- c. Detectors were installed (start date) and removed (end date) on the dates listed.
- d. A quality control duplicate is collected at the same time and location and is analyzed by the same method for evaluating precision in sampling and analysis.

Note: DOE off-site limit for radon-222 concentration is 3 pCi/L above background. (< 0.X) Indicates detection limit is reported. Actual result is less than this value. 1 pCi = 0.037 becquerel

Table 6a 2019 Radon Flux Monitoring Results^a Niagara Falls Storage Site

		R	ado	n-222 Flux				Radon-222 Flu	ıx
	er ^d						er. _d		
NFSS	Qualifier ^d					NFSS	Qualifier ^d		
Sample ID	Que	(pCi	i/m²	/s)	MDA	Sample ID	On?	(pCi/m ² /s)	MDA
1		0.0737	±	0.0126	0.0382	51	Ť	0.1104 ± 0.0210	0.0289
2		0.0601	±	0.0118	0.0244	52		0.0469 ± 0.0108	0.0362
3		0.0673	±	0.0120	0.0205	53		0.0809 ± 0.0144	0.0407
4	U	0.0496	±	0.0329	0.1239	54	U	0.0970 ± 0.0250	0.1015
5	U	0.0367	±	0.0110	0.0404	55		0.1749 ± 0.0217	0.0408
6		0.1616	±	0.0195	0.0256	56		0.1077 ± 0.0183	0.0527
7		0.0696 0.1623	±	0.0118	0.0122 0.0940	57		$ \begin{array}{c cccc} 0.0600 & \pm & 0.0109 \\ 0.1382 & \pm & 0.0267 \end{array} $	0.0122
8		0.1023	±	0.0282	0.0940	58 59		$ \begin{array}{c cccc} 0.1382 & \pm & 0.0267 \\ 0.0881 & \pm & 0.0152 \end{array} $	0.0839
10		0.1110	土	0.0176	0.0004	60		0.0822 ± 0.0156	0.0624
10-DUP		0.1409	±	0.0180	0.0242	60-DUP		0.0926 ± 0.0145	0.0258
11		0.1035	±	0.0160	0.0203	61		0.0851 ± 0.0147	0.0356
12		0.2017	±	0.0309	0.0288	62 ^g		0.2249 ± 0.0270	0.0434
13		0.1322	±	0.0165	0.0064	63		0.0903 ± 0.0149	0.0414
14		0.1191	±	0.0168	0.0201	64		0.8252 ± 0.0862	0.0959
15		0.1509	±	0.0254	0.0288	65 ^g		23.0501 ± 1.9272	0.6387
16		0.1076	±	0.0142	0.0170	66		0.0890 ± 0.0152	0.0184
17		0.0794	±	0.0158	0.0567	67	U	0.0369 ± 0.0130	0.0470
18		0.1049	±	0.0140	0.0121	68	U	0.0310 ± 0.0268	0.1159
19		0.1435	±	0.0287	0.0900	69		0.0738 ± 0.0120	0.0531
20		0.0736	\pm	0.0117	0.0065	70		0.0882 ± 0.0141	0.0183
20-DUP		0.0839	±	0.0113	0.0065	70-DUP		0.0701 ± 0.0135	0.0414
21		0.0969	±	0.0133	0.0092	71		0.0779 ± 0.0142	0.0207
22		0.1884	±	0.0233	0.0549	72		0.1198 ± 0.0211	0.0282
23		0.0615 0.1502	±	0.0110	0.0122 0.0289	73 74		$ \begin{array}{c cccc} 0.1149 & \pm & 0.0177 \\ 0.0683 & \pm & 0.0130 \end{array} $	0.0468 0.0445
25		0.1502	士	0.0204	0.0289	75		0.0083 ± 0.0130 0.1371 ± 0.0264	0.0295
26		0.0978	±	0.0160	0.0243	76	U	0.0329 ± 0.0239	0.0614
27		0.1066	±	0.0185	0.0462	77		0.1268 ± 0.0176	0.0247
28		0.1318	±	0.0266	0.0718	78		0.1142 ± 0.0154	0.0124
29		0.0717	±	0.0125	0.0171	79		0.1958 ± 0.0305	0.0295
30		0.1248	\pm	0.0185	0.0242	80	U	0.0366 ± 0.0204	0.0657
30-DUP		0.1454	\pm	0.0221	0.0522	80-DUP		0.0560 ± 0.0124	0.0469
31		0.1228	\pm	0.0164	0.0203	81		0.0461 ± 0.0117	0.0365
32		0.1905	±	0.0283	0.0288	82	U	0.0283 ± 0.0177	0.0525
33		0.0891	±	0.0131	0.0352	83		0.0534 ± 0.0120	0.0409
34		0.0427 0.1339	±	0.0105 0.0245	0.0399 0.0277	84 85	U	$\begin{array}{c cccc} 0.1164 & \pm & 0.0248 \\ 0.0322 & \pm & 0.0229 \end{array}$	0.0296 0.0659
36		0.1339	土	0.0243	0.0277	86	U	0.0322 ± 0.0229 0.0694 ± 0.0137	0.0039
37		0.0029	土	0.0151	0.0333	87		0.0513 ± 0.0102	0.0123
38		0.0568	±	0.0126	0.0329	88		0.0826 ± 0.0186	0.0295
39		0.0890	±	0.0184	0.0253	89		0.0703 ± 0.0140	0.0410
40		0.0460	±	0.0099	0.0264	90		0.1698 ± 0.0215	0.0249
40-DUP		0.0594	±	0.0123	0.0358	90-DUP		0.1611 ± 0.0227	0.0448
41		0.1034	±	0.0158	0.0182	91		0.1086 ± 0.0159	0.0209
42		0.0757	±	0.0137	0.0469	92		0.0889 ± 0.0224	0.0295
43	U	0.0688	±	0.0203	0.0697	93	1	0.0514 ± 0.0115	0.0094
44		0.0342	±	0.0088	0.0172	94	ΤT	0.0848 ± 0.0142	0.0331
45 46	U	0.0443 0.0219	±	0.0098	0.0181	95 96	U	0.0708 ± 0.0337 -0.0070 ± 0.0065	0.1207
46	U	0.0219	±	0.0079	0.0396	96	U	$\begin{array}{c cccc} -0.0070 & \pm & 0.0065 \\ \hline 0.0726 & \pm & 0.0126 \end{array}$	0.0523
48	J	0.0437	±	0.0304	0.1097	98	1	0.0720 ± 0.0120 0.1046 ± 0.0172	0.0180
49		0.0333	土	0.0110	0.0302	99	U	0.0201 ± 0.0268	0.0347
50		0.0673	±	0.0115	0.0205	100	U	0.0140 ± 0.0089	0.0404
50-DUP		0.0686	±	0.0121	0.0205	100-DUP		0.0192 ± 0.0138	0.0441
L			-						

Table 6a (cont.)

2019 Radon Flux Monitoring Results^a Niagara Falls Storage Site

	_	F	Rado	n-222 Flux	a rans Stora	ige Site	_	Radon-222 Flux					
	Qualifier ^d						Qualifier ^d						
NFSS	alif					NFSS	alif						
Sample ID	οn	(pCi	i/m²	/s)	MDA	Sample ID	on	(pC	i/m	² /s)	MDA		
101		0.0780	\pm	0.0169	0.0644	151		0.0417	±	0.0095	0.0138	Ī	
102	U	0.0350	±	0.0127	0.0485	152		0.1544	±	0.0283	0.0287	1	
103	U	0.0427	±	0.0123	0.0460	153	U	0.0428	±	0.0135	0.0492	1	
104		0.1073	\pm	0.0257	0.0913	154		0.0404	±	0.0097	0.0138]	
105		0.1512	±	0.0230	0.0197	155		0.0703	±	0.0192	0.0328]	
106	U	0.0123	±	0.0171	0.0691	156		0.0516	±	0.0123	0.0194		
107		0.0687	±	0.0134	0.0140	157		0.0695	±	0.0188	0.0551		
108		0.2351	±	0.0393	0.0335	158		0.0343	±	0.0100	0.0230]	
109		0.0589	±	0.0215	0.0566	159	U	-0.0394	±	0.0528	0.1185		
110		0.1630	\pm	0.0257	0.0281	160		0.0698	\pm	0.0233	0.0628		
110-DUP		0.1333	\pm	0.0229	0.0526	160-DUP		0.0398	\pm	0.0134	0.0458		
111		0.0407	\pm	0.0113	0.0380	161	U	0.0494	\pm	0.0145	0.0592		
112		0.1269	±	0.0253	0.0321	162		0.0467	±	0.0107	0.0207		
113	U	0.0421	\pm	0.0114	0.0631	163		0.0471	\pm	0.0123	0.0233		
114		0.0605	±	0.0117	0.0139	164	U	0.0697	±	0.0279	0.1336		
115		0.1086	±	0.0231	0.0291	165	U	0.0019	±	0.0103	0.0648		
116		0.0595	±	0.0151	0.0414	166	U	0.0490	±	0.0129	0.0498	1	
117	U	0.0342	±	0.0112	0.0404	167		0.0387	±	0.0106	0.0234		
118	U	0.0516	±	0.0288	0.0871	168		0.2327	±	0.0390	0.0290		
119	U	0.0451	±	0.0381	0.1113	169		0.0749	±	0.0163	0.0560		
120		0.0576	\pm	0.0137	0.0393	170		0.1508	±	0.0243	0.0474		
120-DUP		0.0414	±	0.0171	0.0760	170-DUP		0.1202	±	0.0219	0.0515		
121		0.0820	±	0.0186	0.0510	171		0.0375	±	0.0103	0.0236		
122		0.0732	\pm	0.0150	0.0278	172		0.1902	±	0.0341	0.0319		
123	U	0.0058	±	0.0189	0.0636	173		0.1089	±	0.0199	0.0569		
124	U	0.0547	±	0.0204	0.0674	174		0.0917	±	0.0169	0.0235		
125		0.0675	±	0.0150	0.0322	175	U	0.0702	±	0.0281	0.1506		
126		0.0467	±	0.0135	0.0400	176	U	0.0109	±	0.0208	0.0556		
127	U	0.0434	±	0.0147	0.0489	177		0.0449	±	0.0129	0.0280		
128	U	0.0428	±	0.0388	0.1493	178	U	-0.0068	±	0.0220	0.0488		
129	U	0.0315	±	0.0127	0.0509	179	U	0.0000	±	0.0000	0.1309	ļ.	
130		0.0626	±	0.0141	0.0207	180	U	-0.0020	±	0.0096	0.0532	ļ.	
130-DUP		0.0598	±	0.0157	0.0520	180-DUP		0.0275	土	0.0150	0.0476		
131		0.0523	±	0.0116	0.0235	181°		0.0263	±	0.0092	0.0247		
132		0.1014	\pm	0.0234	0.0290	182°		0.0928	\pm	0.0215	0.0335		
133		0.0752	H	0.0151	0.0378	183°		0.0354	±	0.0092	0.0218		
134		0.0896	±	0.0158	0.0140	Average						İ	
135		0.1571	±	0.0337	0.0898	background		0.05148		(pCi/i	m~/s)		
136	U	0.0234	±	0.0176	0.0544	Î		IWCS		Value	Units		
137		0.1018	±	0.0186	0.0464	1		Average		0.2109	(pCi/m ² /s)		
138		0.0580	±	0.0127	0.0139	1		High ^f		0.8252	(pCi/m²/s)		
139		0.1469	±	0.0326	0.0139	1		Low		-0.0394	(pCi/m ² /s)		
140	U	0.1469	_	0.0320	0.0523	NOTE: The E	DA C		Da J				
140-DUP	U	0.0149	±	0.0108	0.0323	a. Radon-222							
140-DOP	U	0.0100	±	0.0197	0.0630	a. Radon-222 b. Every 10th					,	Aposure).	
141	U	0.0279	±	0.0137	0.0767	1 7					•		
142	U	0.0337	±	0.0131	0.0468	(QC) duplicate to evaluate analytical precision.							
143	U	0.0377	±	0.0192	0.0310	c. Background:							
144	U	0.0768	±	0.0408	0.1693								
145	U	0.0189	±	0.0240	0.0323	-1		CWM Second					
146	U	0.0298	±	0.0172	0.0772	d. Data Qualif					Non Datast		
148		0.0777	±	0.0147	0.0139						ercent differe	ence > 200/	
	IJ		_			-1					ercent differe		
149 150	U	0.0482 0.1044	±	0.0238	0.0627 0.0277	e. Average of				•		.ເະ (-DUP).	
			±			-			ına I	Jii-detects)			
150-DUP	<u> </u>	0.0985	工	0.0183	0.0478	f. Highest dete	ciable	munig.					

f. Highest detectable finding.g. This result represents the area of elevated flux which has been studied for its spatial and temporal variation and it's correct influence on the annual average flux calculation

Table 6b 2019 Heterogeneous Regional Radon Flux Monitoring Results ^a Niagara Falls Storage Site

			Radon-222 Flux							R	ad	on-222 Flux	
NFSS Sample ID	Date	Qualifier ^d	(pCi	/ m ²/	/s)	MDA	NFSS Sample ID	Date	Qualifier ^d	(pCi	i/m	² /s)	MDA
47 ^g	10/11/2019		0.1177	±	0.0302	0.0207	B4	10/25/2019		83.7565	±	9.1729	0.9531
62	7/10/2019		0.2249	±	0.0270	0.0434	B5 ^b	10/22/2019		167.5266	±	49.1145	2.1485
62	10/11/2019		0.3781	±	0.0603	0.0207	B5	10/25/2019		11.0872	±	1.2035	0.3790
65	7/10/2019		23.0501	\pm	1.9272	0.6387	B5-DUP ^b	10/22/2019		168.7768	\pm	49.3911	2.1644
65	10/11/2019		0.1145	±	0.0294	0.0487	B6 ^b	10/22/2019		0.6798	±	0.2026	0.0327
B1	10/11/2019		1.2801	±	0.1565	0.0691	B7	10/25/2019		243.0714	\pm	28.1311	1.5976
B1-DUP	10/11/2019		1.3213	±	0.1633	0.0691	B7-DUP	10/25/2019		237.8208	±	24.8769	1.5994
B2	10/11/2019		66.8727	±	7.0762	1.2301	B8	10/25/2019		6.8274	\pm	0.7457	0.2916
B2	10/25/2019		41.0868	±	4.3460	0.4642	B9	10/25/2019		18.3382	±	2.3235	0.6677
В3	10/11/2019		23.2846	±	2.4593	0.2397	B10	10/25/2019		3.5635	±	0.4068	0.0458
В3	10/25/2019		72.9996	\pm	8.4318	1.4330	B11	10/25/2019		115.2764	\pm	12.2845	1.5597
B4	10/11/2019		64.8823	±	6.8642	1.0638	B12	10/25/2019		75.4845	±	8.7238	1.4556
					2		183°	10/11/2019		0.1247	±	0.0312	0.0218

NOTE: This sub-region of the IWCS is approximately 225 m²

- a. Radon-222 flux was performed over 24 hour exposure except where noted
- **b**. Radon-222 flux was performed over 96 hour exposure
- c. Background: 183-Balmer Rd. (CWM Secondary Gate)
- d. Data Qualifier: U no analyte was detected (Non-Detect).
 J indicates a estimated value when relative percent difference > 30%

and Z-score > 1.96 between the primary finding and duplicate (-DUP).

- e. Average of all values (detects and Un-detects)
- f. Highest detectable finding.
- g. Measurement performed as reference; not included in region mean

0.1247	1 0.0312	0.0210
Region	Value	<u>Units</u>
Average ^e	50.9892	(pCi/m ² /s)
$High^{\mathrm{f}}$	243.0714	(pCi/m ² /s)
Low	0.1145	(pCi/m ² /s)

Table 7 2019 Surface water Field Parameter Measurements Niagara Falls Storage Site

SURFACE WATER

		Temperature		ORP^f	Spec. Cond.b	Turbidity	DO^d
Surface Water	Date	$({}^{\circ}F^{a})$	pН	(mV^g)	(mS/cm ^c)	(NTU^h)	(mg/L ^e)
SWSD025 ¹	03/12/2019	34.8	6.72	181	1.200	36.4	10.88
SWSD009	05/23/2019	71.5	7.51	115	1.760	11.0	5.45
SWSD010	05/29/2019	56.6	7.31	96	1.050	28.1	4.69
SWSD011	05/29/2019	56.5	7.53	210	0.833	16.2	8.32
SWSD021 ²	05/29/2019	58.1	7.39	91	0.752	76.5	5.46
SWSD022	05/29/2019	56.7	7.42	32	1.000	31.0	6.42
SWSD023	05/23/2019	62.6	7.06	0	1.490	3.0	3.45
SWSD025 ¹	05/29/2019	56.7	7.45	155	0.964	26.4	10.05
WDD2	05/23/2019	66.2	7.47	187	0.786	33.6	5.36
WDD3	05/23/2019	73.2	7.59	177	0.763	37.6	4.88
SWSD025 ¹	8/28/2019	70.3	7.36	54	1.230	2.6	3.37
SWSD009 ²	10/22/2019	58.6	7.52	141.0	1.39	83.2	7.60
SWSD010	10/23/2019	52.5	7.52	93.0	0.900	38.8	9.06
SWSD011	10/23/2019	54.6	7.68	168.0	0.810	8.9	9.36
SWSD021	10/23/2019	52.2	7.66	125.0	0.477	22.5	9.13
SWSD022	10/23/2019	51.9	7.57	157.0	0.911	12.0	9.75
SWSD023	10/22/2019	58.0	6.74	10.0	1.020	35.1	4.82
SWSD025 ¹	10/23/2019	51.8	7.64	134.0	0.887	10.5	9.79
WDD2	10/21/2019	55.7	7.46	109.0	0.934	15.0	6.65
WDD3	10/21/2019	56.1	6.90	176.0	0.930	5.0	6.60

- a. °F Degrees Fahrenheit.
- b. Spec. Cond. Specific conductance.
- c. mS/cm millisiemens/centimeter.
- d. DO Dissolved oxygen.
- e. mg/L milligrams per liter.
- f. ORP Oxidation-Reduction potential.
- g. mV milliVolts.
- h. NTU Nephelometric turbidity units.

NA - Not Applicable

^{*}Parameter not taken/meter malfunction

¹ NYSDOH requested sampling location for quarterly sampling.

²Primary sample will have an accompanying filtered sample (-F).

Location Identifier		SWSD009	SWSD009	SWSD009	SWSD010	SWSD010
Field Sample Identifier		SWSD009	SWSD009	SWSD009-D	SWSD010	SWSD010
Sample Matrix		Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
Depth Interval (ft)		-	-	-	-	-
Date of Sample		05/23/19	10/22/19	10/22/19	05/29/19	10/23/19
Parameter	Units			Field Duplicate		
RADIONUCLIDES						
RADIUM-226	PCI/L	0.24	2.39 J	0.44 UJ	0.11 U	0.4
TOTAL URANIUM	UG/L	8.05	5.96	5.3	10.2	3.73
RADIONUCLIDES (FILTERED)						
RADIUM-226	PCI/L	Not Analyzed	0.37 U	Not Analyzed	Not Analyzed	Not Analyzed
TOTAL URANIUM	UG/L	Not Analyzed	6.76	Not Analyzed	Not Analyzed	Not Analyzed

The flags shown were assigned during chemistry validation.

U - Not detected above the reported quantitation limit.; R - The data is rejected.; J - The reported concentration is an estimated value.

Location Identifier		SWSD011	SWSD011	SWSD021	SWSD021	SWSD022
Field Sample Identifier		SWSD011	SWSD011	SWSD021	SWSD021	SWSD022
Sample Matrix		Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
Depth Interval (ft)		-	-	-	-	-
Date of Sample		05/29/19	10/23/19	05/29/19	10/23/19	05/29/19
Parameter	Units					
RADIONUCLIDES						
RADIUM-226	PCI/L	0.11 U	0.3 U	0.57	0.24 U	0.14 U
TOTAL URANIUM	UG/L	9.65	7.81	Not Analyzed	3.83	11.3
RADIONUCLIDES (FILTERED)						
RADIUM-226	PCI/L	Not Analyzed	Not Analyzed	0.17 U	Not Analyzed	Not Analyzed
TOTAL URANIUM	UG/L	Not Analyzed	Not Analyzed	12.1	Not Analyzed	Not Analyzed

The flags shown were assigned during chemistry validation.

U - Not detected above the reported quantitation limit.; R - The data is rejected.; J - The reported concentration is an estimated value.

Location Identifier		SWSD022	SWSD023	SWSD023	SWSD025	SWSD025
Field Sample Identifier		SWSD022	SWSD023	SWSD023	SWSD025	SWSD025
Sample Matrix		Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
Depth Interval (ft)		-	-	-	-	-
Date of Sample		10/23/19	05/23/19	10/22/19	03/12/19	05/29/19
Parameter	Units					
RADIONUCLIDES						
RADIUM-226	PCI/L	0.57	0.07 U	0.38 U	0.03 U	0.23 U
TOTAL URANIUM	UG/L	6.88	6.68	3.15	12.1	10
RADIONUCLIDES (FILTERED)						
RADIUM-226	PCI/L	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed
TOTAL URANIUM	UG/L	Not Analyzed				

The flags shown were assigned during chemistry validation.

U - Not detected above the reported quantitation limit.; R - The data is rejected.; J - The reported concentration is an estimated value.

Location Identifier		SWSD025	SWSD025	WDD2	WDD2	WDD3
Field Sample Identifier		SWSD025	SWSD025	WDD2	WDD2	WDD3
Sample Matrix		Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
Depth Interval (ft)		-	-	-	-	-
Date of Sample		08/28/19	10/23/19	05/23/19	10/21/19	05/23/19
Parameter	Units					
RADIONUCLIDES						
RADIUM-226	PCI/L	0.41	0.32 U	0.02 U	0.4 U	0.09 U
TOTAL URANIUM	UG/L	5.06	7.74	3.8	2.24	4
RADIONUCLIDES (FILTERED)						
RADIUM-226	PCI/L	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed
TOTAL URANIUM	UG/L	Not Analyzed				

The flags shown were assigned during chemistry validation.

U - Not detected above the reported quantitation limit.; R - The data is rejected.; J - The reported concentration is an estimated value.

Location Identifier		WDD3	WDD3
Field Sample Identifier	WDD3-D	WDD3	
Sample Matrix		Surface Water	Surface Water
Depth Interval (ft)		-	-
Date of Sample		05/23/19	10/21/19
Parameter	Units	Field Duplicate	
RADIONUCLIDES			
RADIUM-226	PCI/L	0.11 U	0.32 U
TOTAL URANIUM	UG/L	4.4	2.29
RADIONUCLIDES (FILTERED)			
RADIUM-226	PCI/L	Not Analyzed	Not Analyzed
TOTAL URANIUM	UG/L	Not Analyzed	Not Analyzed

The flags shown were assigned during chemistry validation.

U - Not detected above the reported quantitation limit.; R - The data is rejected.; J - The reported concentration is an estimated value.

Location Identifier		SWSD009	SWSD009	SWSD009	SWSD010	SWSD010
Field Sample Identifier		SWSD009	SWSD009	SWSD009-D	SWSD010	SWSD010
Sample Matrix		Sediment	Sediment	Sediment	Sediment	Sediment
Depth Interval (ft)		-	-	-	-	-
Date of Sample		05/24/19	10/22/19	10/22/19	05/29/19	10/23/19
Parameter	Units			Field Duplicate		
RADIONUCLIDES						
RADIUM-226	PCI/G	1.14	0.9 U	1.17	1.63	1.5
URANIUM-233/234	PCI/G	1.15	1.21	1.09	3.12	3.62
URANIUM-235	PCI/G	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed
URANIUM-235/236	PCI/G	0.037	0.054	0.063	0.158	0.136
URANIUM-238	PCI/G	1.01	1.06	0.96	2.9	3.06

The flags shown were assigned during chemistry validation.

U - Not detected above the reported quantitation limit.; R - The data is rejected.; J - The reported concentration is an estimated value.

Location Identifier		SWSD011	SWSD011	SWSD021	SWSD021	SWSD022
Field Sample Identifier		SWSD011	SWSD011	SWSD021	SWSD021	SWSD022
Sample Matrix		Sediment	Sediment	Sediment	Sediment	Sediment
Depth Interval (ft)		-	-	-	-	-
Date of Sample		05/29/19	10/23/19	05/30/19	10/23/19	05/29/19
Parameter	Units					
RADIONUCLIDES						
RADIUM-226	PCI/G	1.45	2.07	1.6	1.05	1.58
URANIUM-233/234	PCI/G	2.17	2.38	1.08	1.19	1.7
URANIUM-235	PCI/G	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed
URANIUM-235/236	PCI/G	0.094	0.119	0.046	0.094	0.074
URANIUM-238	PCI/G	2.07	2.09	1.07	1.12	1.66

The flags shown were assigned during chemistry validation.

U - Not detected above the reported quantitation limit.; R - The data is rejected.; J - The reported concentration is an estimated value.

Location Identifier		SWSD022	SWSD023	SWSD023	SWSD025	SWSD025
Field Sample Identifier		SWSD022	SWSD023	SWSD023	SWSD025	SWSD025
Sample Matrix		Sediment	Sediment	Sediment	Sediment	Sediment
Depth Interval (ft)		-	-	-	-	-
Date of Sample		10/23/19	05/24/19	10/22/19	03/13/19	05/29/19
Parameter	Units					
RADIONUCLIDES						
RADIUM-226	PCI/G	1.46	0.85	1.06	Not Analyzed	1.36
URANIUM-233/234	PCI/G	1.81	1.06	0.9	2.18	2.8
URANIUM-235	PCI/G	Not Analyzed	Not Analyzed	Not Analyzed	0.1 U	Not Analyzed
URANIUM-235/236	PCI/G	0.086	0.05	0.065	0.096	0.124
URANIUM-238	PCI/G	1.78	0.93	0.94	1.92	2.42

The flags shown were assigned during chemistry validation.

U - Not detected above the reported quantitation limit.; R - The data is rejected.; J - The reported concentration is an estimated value.

Location Identifier		SWSD025	SWSD025	SWSD025	WDD2	WDD2
Field Sample Identifier		SWSD025	SWSD025	SWSD025	WDD2	WDD2
Sample Matrix		Sediment	Sediment	Sediment	Sediment	Sediment
Depth Interval (ft)		-	-	-	-	-
Date of Sample		05/29/19	08/28/19	10/23/19	05/24/19	10/22/19
Parameter	Units	Field Duplicate				
RADIONUCLIDES						
RADIUM-226	PCI/G	1.85	2.25	2.26	0.82	1.33
URANIUM-233/234	PCI/G	2.24	3.48	2.59	0.73	1.9
URANIUM-235	PCI/G	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed
URANIUM-235/236	PCI/G	0.127	0.102	0.109	0.035	0.052
URANIUM-238	PCI/G	2.07	2.73	2.41	0.68	1.44

The flags shown were assigned during chemistry validation.

U - Not detected above the reported quantitation limit.; R - The data is rejected.; J - The reported concentration is an estimated value.

Location Identifier		WDD3	WDD3
Field Sample Identifier	WDD3	WDD3	
Sample Matrix		Sediment	Sediment
Depth Interval (ft)		-	-
Date of Sample		05/24/19	10/22/19
Parameter	Parameter Units		
RADIONUCLIDES			
RADIUM-226	PCI/G	1.46	3.08
URANIUM-233/234	PCI/G	0.93	2.28
URANIUM-235	PCI/G	Not Analyzed	Not Analyzed
URANIUM-235/236	PCI/G	0.039	0.101
URANIUM-238	PCI/G	0.93	1.94

The flags shown were assigned during chemistry validation.

U - Not detected above the reported quantitation limit.; R - The data is rejected.; J - The reported concentration is an estimated value.

TABLE 10 2019 WATER LEVEL MEASUREMENTS

Reference			Quarter 12/19)	2nd Quarter (05/23/19)			Quarter (26/19)	4th Quarter (10/21/19)	
Well No.	Elevation (ft)	Depth to	Groundwater	Depth to	Groundwater	Depth to	Groundwater	Depth to	Groundwater
	(11)	Water (ft)	Elevation (ft)	Water (ft)	Elevation (ft)	Water (ft)	Elevation (ft)	Water (ft)	Elevation (ft)
505	317.80	5.69	312.11	3.09	314.71	14.25	303.55	15.35	302.45
201A	321.47	4.54	316.93	5.07	316.40	5.40	316.07	4.66	316.81
203A	321.87	4.24	317.63	4.73	317.14	4.97	316.90	4.56	317.31
213A	321.37	4.55	316.82	5.12	316.25	7.54	313.83	7.95	313.42
215A 302A	320.26 320.53	3.32	316.94 316.39	4.32	315.94 316.45	12.21	308.05 314.91	9.99	310.27 315.51
303A	320.33	4.14 4.22	317.61	4.08 4.56	317.27	5.62 6.38	315.45	5.02 5.89	315.94
404A	323.73	4.99	318.74	5.18	318.55	7.37	316.36	6.96	316.77
411A	322.05	4.40	317.65	4.22	317.83	5.99	316.06	4.59	317.46
415A	321.27	3.30	317.97	3.34	317.93	8.80	312.47	10.45	310.82
603A	320.57 321.49	2.50*	318.69	2.10	318.47 318.34	3.08	317.49 317.81	2.48	318.09 318.09
606A 808A	319.27	2.80 2.38	316.89	3.15 2.07	317.20	3.68 5.37	313.90	3.40 7.05	312.22
810A	318.44	5.10	313.34	4.76	313.68	14.91	303.53	15.48	302.96
816A	320.62	1.73	318.89	2.66	317.96	2.72	317.90	2.10	318.52
A42	319.70	7.10	312.60	5.20	314.50	5.09	314.61	5.45	314.25
A43	320.50	7.26	313.24	4.63	315.87	5.08	315.42	5.05	315.45
A45 A50	321.70 321.30	9.07 12.59**	312.63	8.22 10.40	313.48 310.90	8.88 10.94	312.82 310.36	8.27 10.69	313.43 310.61
B02W20S	322.00	2.73	319.27	2.88	319.12	3.65	318.35	3.47	318.53
BH49A	320.65	6.24	314.41	4.19	316.46	4.22	316.43	3.61	317.04
MW313	320.88	3.92	316.96	3.64	317.24	6.37	314.51	6.19	314.69
MW314	318.94	3.45	315.49	2.85	316.09	7.53	311.41	8.50	310.44
MW422 MW423	321.36 322.39	19.33 4.91	302.03 317.48	5.26 4.19	316.10 318.20	16.00 10.87	305.36 311.52	18.77 12.57	302.59 309.82
MW424	320.93	3.23	317.70	3.41	317.52	5.06	315.87	3.48	317.45
MW862	319.62	5.69	313.93	6.53	313.09	6.12	313.50	5.82	313.80
MW921	319.88	6.42	313.46	4.94	314.94	12.01	307.87	14.29	305.59
MW922	318.56	3.46	315.10	2.84	315.72	7.17	311.39	6.17	312.39
MW923 MW930	319.53 323.16	4.90 4.79	314.63 318.37	3.54 4.63	315.99 318.53	11.83 10.47	307.70 312.69	15.38 10.72	304.15 312.44
MW934	322.20	4.09	318.11	3.70	318.50	7.67	314.53	7.53	314.67
MW935	319.33	3.95	315.38	4.65	314.68	4.99	314.34	3.92	315.41
MW936	320.64	6.20	314.44	2.29	318.35	3.42	317.22	2.84	317.80
MW938 MW941	319.54 318.98	3.58	315.96 315.55	4.21	315.33 315.82	6.53	313.01 315.29	3.95	315.59 315.76
MW943	318.98	3.43 3.74	317.86	3.16 3.65	317.95	3.69 4.64	316.96	3.22 4.10	317.50
MW944	318.64	5.47	313.17	4.34	314.30	10.71	307.93	11.79	306.85
MW945	320.24	5.48	314.76	5.44	314.80	13.55	306.69	15.62	304.62
MW946	319.65	3.24	316.41	2.42	317.23	7.20	312.45	10.97	308.68
MW947 MW948	322.53 321.04	20.85 2.85*	301.68	6.62 2.77	315.91 318.27	17.92 5.95	304.61 315.09	19.35 6.56	303.18 314.48
MW950	322.03	4.66	317.37	4.18	317.85	5.60	316.43	4.61	317.42
MW951	320.84	5.04	315.80	4.85	315.99	5.75	315.09	5.23	315.61
MW952	320.16	5.30	314.86	4.81	315.35	5.11	315.05	4.40	315.76
MW953	319.94	5.84	314.10	6.34	313.60	5.43	314.51	4.80	315.14
MW954 MW955	319.85 320.09	5.51 21.74**	314.34	4.39 4.84	315.46 315.25	5.02 5.24	314.83 314.85	3.76 4.50	316.09 315.59
MW956	323.13	7.60	315.53	6.25	316.88	7.17	315.96	6.71	316.42
MW957	324.48	7.80	316.68	7.16	317.32	9.42	315.06	8.84	315.64
MW958	319.77	4.18	315.59	4.30	315.47	8.14	311.63	5.18	314.59
MW959 MW960	320.56	5.25	315.31 315.47	4.43	316.13 315.74	5.84	314.72	4.90	315.66
OW02B	321.02 321.55	5.55 5.71	315.84	5.28 3.40	313.74	6.10 3.67	314.92 317.88	5.69 8.87	315.33 312.68
OW02B OW03B	321.55	6.69	314.86	4.39	317.16	4.30	317.25	4.76	316.79
OW04B	320.17	4.78	315.39	3.78	316.39	4.56	315.61	3.62	316.55
OW05B	319.68	5.21	314.47	3.78	315.90	4.95	314.73	3.53	316.15
OW06B OW07B	322.28 319.69	4.93	317.35 314.72	5.08	317.20 315.19	5.55	316.73 310.91	5.28	317.00 315.14
OW0/B OW08B	319.69	4.97 4.42	314.72	4.50 4.40	313.19	8.78 5.39	313.58	4.55 3.96	315.14
OW09B	318.82	3.63	315.19	3.48	315.34	4.98	313.84	3.45	315.37
OW10B	320.13	3.44	316.69	3.07	317.06	4.25	315.88	3.18	316.95
OW11B	319.09	4.14	314.95	3.37	315.72	3.87	315.22	2.98	316.11
OW12B OW13B	319.09 321.09	5.44	313.65 314.16	4.87	314.22	7.08	312.01 315.34	6.20	312.89
OW13B OW15B	321.09	6.93 5.58	314.16	4.94 3.91	316.15 316.21	5.75 5.45	315.34	5.51 4.38	315.58 315.74
OW17B	320.12	17.95	302.34	4.06	316.23	4.20	316.09	3.91	316.38
OW18B	320.76	14.10	306.66	5.78	314.98	5.86	314.90	8.58	312.18

TABLE 10 2019 WATER LEVEL MEASUREMENTS

	LOWER WATER BEARING ZONE WELLS											
A55	320.60	10.50	310.10	9.19	311.41	8.89	311.71	9.20	311.40			
A56	322.30	11.34	310.96	10.00	312.30	9.75	312.55	10.09	312.21			
A57	321.40	3.34	318.06	5.08	316.32	10.33	311.07	3.81	317.59			
B02W19D	319.90	6.78	313.12	6.47	313.43	5.17	314.73	5.55	314.35			
B02W20D	322.00	7.72	314.28	6.47	315.53	6.27	315.73	6.80	315.20			
BH15	320.16	7.26	312.90	5.92	314.24	5.69	314.47	6.21	313.95			
BH48	322.04	8.98	313.06	7.19	314.85	6.75	315.29	7.20	314.84			
BH49	320.23	8.38	311.85	6.76	313.47	8.26	311.97	8.77	311.46			
BH5	321.32	9.76	311.56	8.32	313.00	8.37	312.95	8.90	312.42			
BH51	321.24	8.42	312.82	6.90	314.34	6.94	314.30	7.60	313.64			
BH59	321.45	9.36	312.09	7.50	313.95	7.25	314.20	7.61	313.84			
BH61	318.50	9.06	309.44	4.00	314.50	8.58	309.92	9.56	308.94			
BH63	323.01	9.08	313.93	7.79	315.22	9.73	313.28	8.27	314.74			
BH70	321.29	8.95	312.34	7.66	313.63	7.41	313.88	7.40	313.89			
MW228	320.85	5.53	315.32	4.21	316.64	8.30	312.55	5.24	315.61			
MW229	320.61	7.71	312.90	6.49	314.12	6.11	314.50	6.46	314.15			
MW861	319.92	8.49	311.43	7.04	312.88	6.50	313.42	7.39	312.53			
MW863	319.61	7.30	312.31	6.01	313.60	5.70	313.91	5.93	313.68			
MW949	320.96	8.20	312.76	7.36	313.60	7.96	313.00	8.77	312.19			
OW02A	321.50	9.88	311.62	8.34	313.16	8.35	313.15	8.87	312.63			
OW03A	321.67	9.72	311.95	8.19	313.48	8.27	313.40	8.63	313.04			
OW04A	320.52	8.75	311.77	7.25	313.27	7.22	313.30	7.65	312.87			
OW05A	319.59	7.86	311.73	6.36	313.23	6.44	313.15	6.98	312.61			
OW06A	322.34	9.56	312.78	8.19	314.15	7.98	314.36	8.32	314.02			
OW07A	319.77	7.08	312.69	5.75	314.02	5.48	314.29	5.82	313.95			
OW08A	318.91	6.65	312.26	5.30	313.61	5.12	313.79	5.63	313.28			
OW09A	318.66	6.00	312.66	4.70	313.96	4.50	314.16	4.85	313.81			
OW10A	320.01	7.19	312.82	5.91	314.10	5.65	314.36	5.98	314.03			
OW11A	319.05	6.01	313.04	4.76	314.29	4.39	314.66	4.68	314.37			
OW12A	320.42	7.44	312.98	6.13	314.29	5.82	314.60	6.16	314.26			
OW13A	321.54	8.77	312.77	7.44	314.10	7.18	314.36	7.55	313.99			
OW14A	320.52	9.10	311.42	7.53	312.99	7.51	313.01	8.05	312.47			
OW15A	320.30	9.20	311.10	7.57	312.73	7.53	312.77	8.07	312.23			
OW16A	320.63	8.83	311.80	7.37	313.26	7.17	313.46	7.61	313.02			
OW17A	320.31	7.94	312.37	6.62	313.69	6.32	313.99	6.62	313.69			
OW18A	321.09	7.94	313.15	6.57	314.52	6.32	314.77	6.65	314.44			

NOTES: OW01A is decommissioned.

*Frozen
**Under Development

Table 11 2019 Groundwater Field Parameter Measurements Niagara Falls Storage Site

		Temperature	рН	ORP^f	Spec. Cond.b	Turbidity	DO^{d}	Volume	Discharge
Well ID	Date	(°F ^a)	P	(mV ^g)	(mS/cm ^c)	(NTU ^h)	(mg/L ^e)	Purged (Liters ⁱ)	milliter PM ^j
OW04A ¹	3/12/2019	50.0	8.43	168	1.16	0.0	6.98	5.4	180
OW04B ¹	3/12/2019	47.0	7.30	73	1.60	37.7	1.56	5.3	175
505	6/3/2019	51.8	6.93	-99	6.39	2.5	4.46	6.9	230
302A	5/28/2019	52.7	7.05	18	2.20	9.0	2.06	4.2	120
411A	5/30/2019	58.7	6.9	-53	3.07	3.5	0.61	3.8	125
A42	5/30/2019	72.7	6.62	13	1.50	3.8	0.49	3.3	110
A43	5/31/2019	72.70	6.62	14	1.51	4.1	0.50	3.8	125
A45	5/31/2019	72.8	7.02	81	1.62	0.0	0.76	3.8	125
A50R	5/31/2019	64.5	7.38	210	0.33	0.0	2.80	3.3	110
A55R	5/31/2019	59.8	8.08	159	3.33	1.6	1.05	3.8	125
BH49R	6/4/2019	56.5	7.38	120	1.77	4.8	3.77	4.7	155
BH49AR ³	6/6/2019	56.5	9.07	-171	1.77	0.0	1.05	-	-
MW862	6/3/2019	56.7	6.86	199	1.73	0.2	0.53	3.3	110
MW863 MW921	6/3/2019 6/3/2019	60.6 53.4	7.90 6.98	189 193	1.89 4.71	0.0	1.57 5.28	3.6 5.1	120 170
MW934	5/30/2019	55.6	6.91	145	4.71	19.1	0.80	4.8	160
MW935	5/28/2019	52.2	7.30	-78	1.28	12.6	3.09	4.5	150
MW938	5/28/2019	51.2	7.12	-52	2.36	3.4	1.71	4.4	145
MW943	6/3/2019	61.9	6.94	217	1.75	1.9	0.50	3.4	114
MW944	5/30/2019	57.2	6.60	180	1.31	0.0	2.42	4.8	160
MW945	5/30/2019	55.8	6.81	116	2.67	11.4	1.42	4.9	163
MW946	5/30/2019	56.2	6.99	51	6.80	0.0	4.27	3.9	130
MW947	5/30/2019	58.9	6.81	-47	1.78	7.5	0.69	4.2	140
MW948	5/30/2019	56.8	6.98	214	4.25	15.9	2.30	5.2	173
MW949	5/30/2019	60.3	7.82	-186	2.98	0.0	1.00	5.1	169
MW950 MW951	5/31/2019	57.8	7.11	168	3.15	11.0	0.79	4.4	147
MW951 MW952	6/3/2019 5/28/2019	66.1 55.6	6.90 7.44	19 249	1.60 0.99	0.0 48.9	0.36 3.66	4.6 4.9	130 163
MW953R	5/28/2019	53.3	7.31	276	1.80	0.0	3.62	4.9	163
MW954	5/28/2019	53.9	7.26	213	2.15	0.3	7.31	3.3	110
MW955	5/28/2019	52.3	7.09	218	1.77	1.4	7.17	5.0	167
MW956	5/31/2019	56.3	7.09	140	2.23	8.2	4.82	4.7	155
MW957	5/28/2019	56.6	6.83	239	1.87	95.5	3.34	7.3	183
MW958	5/28/2019	53.3	7.24	222	1.19	7.0	5.42	4.4	148
MW959	5/31/2019	59.3	7.21	147	1.74	22.6	1.60	5.9	168
MW960	5/31/2019	63.1	6.97	-12	1.41	4.8	0.81	5.0	151
OW03A	6/3/2019	56.7	7.74	127	1.89	8.3	5.30	3.8	125
OW03B	6/3/2019	61.7	7.40	194	1.68	0.0	0.69	3.8	125
OW04A	6/3/2019	54.8	8.52	185	1.18	0.0	0.87	3.9	130
OW04B	6/3/2019	52.6	7.14	-67	1.59	22.8	1.50	3.9	130
OW05A OW05B	5/30/2019 5/30/2019	62.3 65.3	7.70 7.24	-76 -2	1.31	88.8 0.8	0.59 0.28	4.8 4.1	160 137
OW06A	6/3/2019	55.8	8.03	64	1.75	5.1	2.94	3.8	125
OW06B	6/3/2019	61.5	7.17	-97	1.59	0.0	0.39	3.8	125
OW07A	5/28/2019	54.5	7.79	103	2.02	1.6	1.62	6.1	152
OW07B	5/28/2019	54.6	7.25	240	1.85	1.4	2.36	4.9	163
OW11A	5/30/2019	56.2	8.03	-66	1.44	0.0	0.92	4.9	163
OW11B	5/30/2019	57.5	7.35	52	1.75	0.0	0.67	5.0	167
OW12A	5/31/2019	58.4	7.43	-90	1.77	4.2	0.42	5.5	166
OW12B	5/31/2019	59.3	7.94	182	0.99	0.2	1.36	5.1	169
OW13A	5/31/2019	57.3	7.39	-97	2.10	0.0	1.20	3.8	125
OW13BR OW15A	6/4/2019 5/28/2019	57.7	7.23	208	1.71	1.5	1.20	4.7 4.7	157
OW15A OW15BR	5/28/2019	55.3 57.7	7.58 7.36	-71 181	2.28 1.70	0.0 2.5	0.87 8.43	4.7	157 143
OW13BR OW17AR	5/29/2019	55.2	7.34	-101	2.40	0.0	1.16	4.8	160
OW17AR OW17BR	5/29/2019	61.5	7.67	201	1.96	6.1	2.46	4.8	160
OW18B	5/30/2019	60.6	7.60	157	2.01	13.1	1.11	4.5	150
,									
OW04A ¹	8/28/2019	64.6	7.88	-136	1.29	0.0	0.47	5.8	193
OW04B ¹	8/28/2019	67.8	7.03	-28	1.59	38.4	7.54	6.5	217

Table 11 2019 Groundwater Field Parameter Measurements Niagara Falls Storage Site

		Temperature	pН	ORP ^f	Spec. Cond.b	Turbidity	DO^{d}	Volume	Discharge
Well ID	Dit	•	PII		_	(NTU ^h)		Purged (Liters ⁱ)	milliter PM ^j
505	Date 10/28/2019	(°F ^a) 60.0	6.58	(mV ^g) -116	(mS/cm ^c) 8.00	0.0	(mg/L ^e) 0.56	3.0	100
302A	10/28/2019	61.5	6.90	-33	2.95	0.0	0.56	4.4	148
411A	10/28/2019	59.4	6.82	-86	2.92	1.7	0.99	6.4	142
A42	10/29/2019	60.5	6.78	-69	1.29	0.3	0.29	6.3	210
A43	10/29/2019	61.1	6.66	-68	0.69	1.5	0.68	3.8	125
A45	10/25/2019	58.6	7.16	-27	1.01	7.0	0.47	4.5	150
A50R	10/29/2019	66.0	6.98	-2	1.07	0.0	0.53	3.8	125
A55R	10/25/2019	55.6	7.35	178	3.02	4.7	1.62	4.3	143
BH49R	10/30/2019	56.1	10.39	-245	1.50	111.0	0.49	4.8	160
BH49AR	10/29/2019	61.2	7.29	1	1.79	5.4	0.60	4.2	140
MW862	10/25/2019	56.9	6.77	14	1.88	0.2	0.63	4.1	137
MW863	10/25/2019	56.0	7.43	-139	2.03	9.9	1.13	4.5	150
MW922	10/24/2019	58.5	6.64	59	5.24	8.9	2.36	3.5	117
MW934	10/28/2019	58.0	6.89	-47	4.22	1.4	1.84	5.4	181
MW935	10/25/2019	56.3	7.34	-209	1.59	1.9	2.86	3.9	129
MW938	10/25/2019	55.7	6.99	-106	2.76	1.0	0.56	4.4	147
MW943	10/25/2019	57.0	7.04	-36	2.29	56.4	1.25	5.2	172
MW944	10/24/2019	63.5	6.69	161	1.32	4.0	3.56	4.2	140
MW945 ²	10/24/2019	58.8	6.70	228	3.50	30.2	1.98	1	100
MW946 ²	10/28/2019	58.0	6.96	33	6.65	38.9	7.06	4.2	140
MW947 ^{2,5}	10/28/2019	56.7	6.60	44	2.66	3.5	0.96	2.4	120
MW422 ⁶	10/28/2019	56.3	6.51	-110	7.57	0.0	0.41	2.5	124
MW948	10/28/2019	58.5	6.97	221	4.49	0.8	4.36	4.7	155
MW949	10/28/2019	56.4	7.88	-220	3.23	8.2	0.41	4.6	153
MW950	10/25/2019	56.8	7.13	113	3.13	0.5	2.42	5.6	187
MW951	10/28/2019	62.7	6.84	-48	2.03	0.0	0.44	3.8	125
MW952 MW953R	10/28/2019	62.5	7.47	88	0.55	47.3	3.86	4.9	163
MW954	10/28/2019	65.4 61.1	7.40 7.40	59 199	1.66	0.0	0.80	4.6 4.1	152
MW955	10/24/2019 10/24/2019	60.1	7.40	199	1.76 1.83	0.0 37.6	3.48 2.38	6.0	137 200
MW956	10/24/2019	60.3	6.99	23	2.29	41.8	0.68	3.8	150
MW957	10/28/2019	63.1	6.82	210	1.95	0.0	3.89	3.3	111
MW958	10/28/2019	61.5	7.16	-45	1.37	0.0	1.92	3.3	110
MW959	10/25/2019	59.3	7.35	114	1.04	3.0	4.33	5.3	175
MW960	10/29/2019	62.1	6.97	17	1.43	5.2	1.68	4.3	143
OW03A	10/29/2019	55.6	7.10	-104	1.95	1.8	0.46	5.9	196
OW03B	10/29/2019	58.5	7.52	105	1.67	0.2	4.47	6.2	205
OW04A	10/25/2019	54.1	7.75	-151	1.30	0.7	0.78	5.8	192
OW04B	10/30/2019	58.2	6.79	6	1.59	31.1	1.44	7.9	262
OW05A	10/25/2019	54.8	7.55	-122	1.37	2.1	0.76	5.8	193
OW05B	10/29/2019	60.7	7.28	-193	1.58	29.7	2.58	5.3	176
OW06A	10/28/2019	60.4	7.42	-129	1.91	0.0	0.58	4.5	150
OW06B	10/25/2019	61.0	7.03	-125	1.68	17.1	0.80	3.9	130
OW07A	10/24/2019	57.6	7.72	-64	2.05	0.0	0.75	5.0	168
OW07B ⁷	10/24/2019	61.0	6.58	205	1.69	29.0	4.18	7.4	245
OW11A	10/29/2019	65.1	7.79	27	1.43	0.0	1.29	4.6	153
OW11B	10/28/2019	61.1	7.44	91	1.70	0.0	1.14	6.8	194
OW12A	10/24/2019	59.7	7.39	-123	1.70	0.0	0.44	5.5	182
OW12B	10/24/2019	59.2	7.06	-10	1.39	5.8	6.90	7.1	235
OW13A	10/24/2019	56.7	7.36	-127	2.10	2.3	0.49	5.8	192
OW13BR	10/28/2019	61.1	7.35	43	1.63	0.0	3.32	7.6	191
OW15A	10/25/2019	55.5	7.49	-120	2.29	3.0	0.75	6.6	188
OW15BR	10/28/2019	61.2	7.29	-1	1.77	0.0	0.84	7.1	177
OW17AR	10/24/2019	55.9	7.77	-135	2.21	1.0	0.51	6.6	165
OW17BR	10/24/2019	60.0	7.72	-31	1.36	0.3	2.28	4.8	160
OW18BR	10/24/2019	61.8	7.31	-106	2.16	0.1	0.73	4.3	142

NOTE: Wells with an 'R' at the end (e.g., MW###R or OW###R) indicate well was replaced.

<sup>a. °F - Degrees Fahrenheit.
b. Spec. Cond. - Specific conductance.
c. mS/cm - millisiemens/centimeter.</sup>

d. DO - Dissolved oxygen.

e. mg/L - milligrams per liter.

f. ORP - Oxidation-Reduction potential.

g. mV - milliVolts. h. NTU - Nephelometric turbidity units. i. 1-Liter = 0.26 gallons

j. Milliter PM = milliter per minute

⁽¹⁰⁰⁰ml = 1.0 liter) -averaged rate

NA - Not Applicable *Parameter not taken/meter malfunction

Quarterly sampling.
 Well purged dry and/or began to purge dry during sampling
 Grab sample (-G)
 Substitute well for wells: 505, MW921, MW944 and MW945

for sample

Substitute well for well: MW947

TDS, ALK and ANIONS -Resampled (10/28) due to lab error.

TABLE 12 GROUNDWATER ANALYTICAL RESULTS - WATER QUALITY PARAMETERS NIAGARA FALLS STORAGE SITE

Location Identifie	302A	302A	411A	411A	505		
Field Sample Identi	fier :		302A	302A	411A	411A	505
Sample Type:	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater		
Sample Depth Interva	al (ft) :		-	-	-	-	-
Date of Sample	:		05/28/19	10/29/19	05/30/19	10/28/19	06/03/19
Parameter	Units	Criteria ¹					
MISCELLANEOUS							
ALKALINITY, TOTAL	MG/L	500	334	419	709	820	867
BROMIDE	MG/L	2	0.56	0.48	0.18 J	0.3	3.6
CHLORIDE (AS CL)	MG/L	250	112	139	26.9	31.1	353
DISSOLVED SOLIDS, TOTAL	MG/L	1000	1,650	2,350	1,980	2,370	5,900
FLUORIDE	MG/L	1.5	0.3	0.28	0.38	0.42	0.02 U
NITROGEN, NITRATE (AS N)	MG/L	10	0.16 J	0.02 U	0.06 J	0.08 J	0.14 J
NITROGEN, NITRITE (AS N)	MG/L	1	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	MG/L	-	0.0029 U	0.011 J	0.0032 J	0.0097 J	0.0096 J
SULFATE	MG/L	250	1,230	1,480	965	1,150	4,460

Concentration Exceeds Criteria

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-239/240, H-3).

U - Not detected above the reported quantitation limit.; R - The data is rejected.; J - The reported concentration is an estimated value.

TABLE 12 GROUNDWATER ANALYTICAL RESULTS - WATER QUALITY PARAMETERS NIAGARA FALLS STORAGE SITE

Location Identifie	505	A42	A42	A43	A43		
Field Sample Identi	505	A42	A42	A43	A43		
Sample Type :	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater		
Sample Depth Interva	al (ft) :		=	=	=	=	=
Date of Sample	:		10/28/19	05/30/19	10/29/19	05/30/19	10/29/19
Parameter	Units	Criteria ¹					
MISCELLANEOUS							
ALKALINITY, TOTAL	MG/L	500	1,180	377	405	526	596
BROMIDE	MG/L	2	4.1	0.34	0.32	0.56	0.52
CHLORIDE (AS CL)	MG/L	250	349	29	37	29.1	28.5
DISSOLVED SOLIDS, TOTAL	MG/L	1000	7,680	1,060	1,020	1,690	1,650
FLUORIDE	MG/L	1.5	0.52	0.16 J	0.1 J	0.24	0.22
NITROGEN, NITRATE (AS N)	MG/L	10	0.12 J	0.02 U	0.06 J	0.02 U	0.02 U
NITROGEN, NITRITE (AS N)	MG/L	1	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	MG/L	-	0.0029 U	0.0029 U	0.013 J	0.0029 U	0.0029 U
SULFATE	MG/L	250	4,130	341	387	763	734

Concentration Exceeds Criteria

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-239/240, H-3).

 $^{\ \, \}text{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value. } \\$

TABLE 12 GROUNDWATER ANALYTICAL RESULTS - WATER QUALITY PARAMETERS NIAGARA FALLS STORAGE SITE

Location Identifie	A45	A45	MW422	MW862	MW862		
Field Sample Identi	A45	A45	MW422	MW862	MW862		
Sample Type :	Groundwater	Groundwater	Groundwater	Groundwater	Groundwater		
Sample Depth Interva	al (ft) :		-	-	-	-	-
Date of Sample	:		05/31/19	10/25/19	10/28/19	06/03/19	10/25/19
Parameter	Units	Criteria ¹					
MISCELLANEOUS							
ALKALINITY, TOTAL	MG/L	500	415	459	1,160	650	635
BROMIDE	MG/L	2	0.2	0.34 J	1.1	0.54	0.56 J
CHLORIDE (AS CL)	MG/L	250	58.2	59.2	141	68.3	69.1
DISSOLVED SOLIDS, TOTAL	MG/L	1000	1,720	1,570	8,170	1,390	1,370
FLUORIDE	MG/L	1.5	0.12 J	0.1 J	0.76	0.2	0.18 J
NITROGEN, NITRATE (AS N)	MG/L	10	0.1 J	0.02 U	0.08 J	0.36	0.22
NITROGEN, NITRITE (AS N)	MG/L	1	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	MG/L	-	0.0029 U	0.0097 J	0.0029 U	0.0029 U	0.013 J
SULFATE	MG/L	250	712	719	4,600	401	368 J

Concentration Exceeds Criteria

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-239/240, H-3).

 $^{\ \, \}text{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value. } \\$

Location Identifie	r:		MW863	MW863	MW921	MW921	MW934
Field Sample Identi	fier :		MW863	MW863	MW921	MW921	MW934
Sample Type :			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Sample Depth Interval (ft) :		=	=	=	=	=	
Date of Sample	Date of Sample :		06/03/19	10/25/19	06/03/19	10/24/19	05/30/19
Parameter	Units	Criteria ¹					
MISCELLANEOUS							
ALKALINITY, TOTAL	MG/L	500	227	Not Analyzed	789	819	695
BROMIDE	MG/L	2	0.46	0.5 J	3.1	2.7 J	0.68
CHLORIDE (AS CL)	MG/L	250	32.7	31.9	270	232	61.1
DISSOLVED SOLIDS, TOTAL	MG/L	1000	1,760	1,500	4,410	4,380	3,610
FLUORIDE	MG/L	1.5	0.16 J	0.18 J	0.1 J	0.02 U	0.2
NITROGEN, NITRATE (AS N)	MG/L	10	0.46	0.34	0.14 J	0.02 U	0.06 J
NITROGEN, NITRITE (AS N)	MG/L	1	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	MG/L	-	0.0029 U	0.011 J	0.0029 U	0.0048 J	0.0029 U
SULFATE	MG/L	250	957	907	2,740	2,340	2,000

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-239/240, H-3).

 $^{\ \, \}text{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value. } \\$

Location Identifie	r:		MW934	MW935	MW935	MW938	MW938
Field Sample Identi	fier :		MW934	MW935	MW935	MW938	MW938
Sample Type :			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Sample Depth Interval (ft):		-	-	-	-	-	
Date of Sample	:		10/28/19	05/28/19	10/25/19	05/28/19	10/25/19
Parameter	Units	Criteria ¹					
MISCELLANEOUS							
ALKALINITY, TOTAL	MG/L	500	719	408	524	677	802
BROMIDE	MG/L	2	0.6	0.04 U	0.04 U	0.18 J	0.04 U
CHLORIDE (AS CL)	MG/L	250	57.6	4	6	13	14.4
DISSOLVED SOLIDS, TOTAL	MG/L	1000	3,730	744	932	1,720	1,740
FLUORIDE	MG/L	1.5	0.38	0.58	0.46	0.3	0.3
NITROGEN, NITRATE (AS N)	MG/L	10	0.34	1.1	0.38	0.08 J	0.16 J
NITROGEN, NITRITE (AS N)	MG/L	1	0.02 U				
PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	MG/L	-	0.0029 U	0.0029 U	0.053	0.0029 U	0.021 J
SULFATE	MG/L	250	3,100	186	284	726	860

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-239/240, H-3).

 $^{\ \, \}text{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value. } \\$

Location Identifie	r:		MW943	MW943	MW944	MW945	MW945
Field Sample Identi	fier :		MW943	MW943	MW944	MW945	MW945
Sample Type :			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Sample Depth Interval (ft) :		=	=	=	=	=	
Date of Sample	:		06/03/19	10/25/19	05/30/19	05/30/19	10/24/19
Parameter	Units	Criteria ¹					
MISCELLANEOUS							
ALKALINITY, TOTAL	MG/L	500	400	424	497	493	606
BROMIDE	MG/L	2	0.26	0.38 J	0.16 J	1.7	1.7 J
CHLORIDE (AS CL)	MG/L	250	74.3	80.9	7.1	137	150
DISSOLVED SOLIDS, TOTAL	MG/L	1000	1,510	1,370	963	4,610 J	2,540
FLUORIDE	MG/L	1.5	0.34	0.4	0.14 J	0.22	0.18 J
NITROGEN, NITRATE (AS N)	MG/L	10	0.02 U	0.08 J	0.06 J	0.04 J	0.06 J
NITROGEN, NITRITE (AS N)	MG/L	1	0.02 U				
PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	MG/L	-	0.0029 U	0.011 J	0.008 J	0.0048 J	0.013 J
SULFATE	MG/L	250	599	558	206	953	1,970

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-239/240, H-3).

 $^{\ \, \}text{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value. } \\$

Location Identifie	r:		MW946	MW946	MW947	MW948	MW948
Field Sample Identi	fier :		MW946	MW946-G	MW947 Groundwater	MW948	MW948
Sample Type :			Groundwater	Groundwater		Groundwater	Groundwater
Sample Depth Interva	Sample Depth Interval (ft) :		-	-	-	-	=
Date of Sample	:		05/30/19	10/29/19	05/30/19	05/30/19	10/28/19
Parameter	Units	Criteria ¹					
MISCELLANEOUS							
ALKALINITY, TOTAL	MG/L	500	468	537	681	540	580
BROMIDE	MG/L	2	2.5	2.5	0.04 U	0.82	0.78
CHLORIDE (AS CL)	MG/L	250	534	330	20.4	88.6	84
DISSOLVED SOLIDS, TOTAL	MG/L	1000	6,180	6,750	1,200	4,260	3,990
FLUORIDE	MG/L	1.5	0.02 U	0.34	0.26	0.18 J	0.34
NITROGEN, NITRATE (AS N)	MG/L	10	0.66	0.32	0.22	0.04 J	0.18 J
NITROGEN, NITRITE (AS N)	MG/L	1	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	MG/L	-	0.016 J	0.0081 J	0.0029 U	0.0064 J	0.0081 J
SULFATE	MG/L	250	4,280	4,910	316	3,590	2,600

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-239/240, H-3).

 $^{\ \, \}text{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value. } \\$

Location Identifie	r:		MW949	MW949	MW950	MW950	MW951
Field Sample Identi	fier :		MW949	MW949	MW950	MW950	MW951
Sample Type :			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Sample Depth Interval (ft) :		-	-	-	-	-	
Date of Sample :			05/30/19	10/28/19	05/31/19	10/25/19	06/03/19
Parameter	Units	Criteria ¹					
MISCELLANEOUS							
ALKALINITY, TOTAL	MG/L	500	126	136	518	530	505
BROMIDE	MG/L	2	0.92	0.82	0.52	0.5 J	0.2
CHLORIDE (AS CL)	MG/L	250	91.2	86.8	59.9	61.5	77.6
DISSOLVED SOLIDS, TOTAL	MG/L	1000	2,560	2,840	2,620	2,600	1,410
FLUORIDE	MG/L	1.5	0.12 J	0.14 J	0.24	0.3	0.26
NITROGEN, NITRATE (AS N)	MG/L	10	0.18 J	0.02 U	0.06 J	0.12 J	0.02 U
NITROGEN, NITRITE (AS N)	MG/L	1	0.02 U				
PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	MG/L	-	0.0029 U	0.0081 J	0.0032 J	0.0065 J	0.0029 U
SULFATE	MG/L	250	1,640	1,840	2,490	1,450	477

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-239/240, H-3).

 $^{\ \, \}text{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value. } \\$

Location Identifie	r:		MW951	MW952	MW952	MW954	MW954
Field Sample Identi	fier :		MW951	MW952	MW952	MW954	MW954
Sample Type :			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Sample Depth Interval (ft) :		-	-	-	-	-	
Date of Sample :		10/28/19	05/28/19	10/28/19	05/28/19	10/24/19	
Parameter	Units	Criteria ¹					
MISCELLANEOUS							
ALKALINITY, TOTAL	MG/L	500	567	249	178	335	376
BROMIDE	MG/L	2	0.2	0.04 J	0.04 U	0.06 J	0.04 UJ
CHLORIDE (AS CL)	MG/L	250	78.2	26.6	7.8	31.3	20.2
DISSOLVED SOLIDS, TOTAL	MG/L	1000	1,400	1,020	362 J	1,880	1,010
FLUORIDE	MG/L	1.5	0.26	0.36	0.26	0.34	0.56
NITROGEN, NITRATE (AS N)	MG/L	10	0.02 U	0.64	1.1	0.66	0.46
NITROGEN, NITRITE (AS N)	MG/L	1	0.02 U	0.02 U	0.02 J	0.02 U	0.02 U
PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	MG/L	-	0.0029 U	0.0029 U	0.018 J	0.0029 U	0.011 J
SULFATE	MG/L	250	505	488	99.2	924	470

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-239/240, H-3).

 $^{\ \, \}text{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value. } \\$

Location Identifie	r:		MW955	MW955	MW956	MW956	MW957
Field Sample Identi	fier :		MW955	MW955	MW956	MW956	MW957
Sample Type :			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Sample Depth Interva	al (ft) :		=	-	=	-	-
Date of Sample :		05/28/19	10/24/19	05/31/19	10/24/19	05/28/19	
Parameter	Units	Criteria ¹					
MISCELLANEOUS							
ALKALINITY, TOTAL	MG/L	500	363	425	499	Not Analyzed	614
BROMIDE	MG/L	2	0.18 J	0.16 J	0.42	0.38 J	0.24
CHLORIDE (AS CL)	MG/L	250	26.2	24.9	38.3	35.6	10.2
DISSOLVED SOLIDS, TOTAL	MG/L	1000	1,380	1,270	1,850	1,620	1,610
FLUORIDE	MG/L	1.5	0.28	0.3	0.24	0.26	0.48
NITROGEN, NITRATE (AS N)	MG/L	10	0.22 J	0.22	0.36	0.08 J	0.24 J
NITROGEN, NITRITE (AS N)	MG/L	1	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	MG/L	-	0.0029 U	0.0029 U	0.0029 U	0.0065 J	0.0029 U
SULFATE	MG/L	250	610	651	956	848	626

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-239/240, H-3).

 $^{\ \, \}text{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value. } \\$

Location Identifie	er:		MW957	MW958	MW958	MW959	MW959
Field Sample Identi	fier :		MW957	MW958	MW958	MW959	MW959
Sample Type :			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Sample Depth Interval (ft):			=	-	-	=	=
Date of Sample	:		10/28/19	05/28/19	10/28/19	05/31/19	10/25/19
Parameter	Units	Criteria ¹					
MISCELLANEOUS							
ALKALINITY, TOTAL	MG/L	500	626	432	533	447	411
BROMIDE	MG/L	2	0.2	0.08 J	0.12 J	0.2	0.18 J
CHLORIDE (AS CL)	MG/L	250	7.3	32.3	34.9	51.4	28.3
DISSOLVED SOLIDS, TOTAL	MG/L	1000	1,360	824	880	1,360	788
FLUORIDE	MG/L	1.5	0.5	0.36	0.3	0.44	0.46
NITROGEN, NITRATE (AS N)	MG/L	10	0.08 J	0.04 J	0.02 U	1.7	0.36
NITROGEN, NITRITE (AS N)	MG/L	1	0.02 U				
PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	MG/L	-	0.0032 J	0.0029 U	0.0048 J	0.0029 U	0.0097 J
SULFATE	MG/L	250	502	184	211	534	270

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-239/240, H-3).

 $^{\ \, \}text{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value. } \\$

Location Identifie	r:		MW960	MW960	OW03A	OW03A	OW03B
Field Sample Identi	fier :		MW960	MW960	OW03A	OW03A	OW03B
Sample Type :			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Sample Depth Interva	Sample Depth Interval (ft):		-	-	-	-	-
Date of Sample :			05/31/19	10/29/19	06/03/19	10/29/19	06/03/19
Parameter	Units	Criteria ¹					
MISCELLANEOUS							
ALKALINITY, TOTAL	MG/L	500	505	519	475	485	478
BROMIDE	MG/L	2	0.04 U	0.08 J	0.32	0.38	0.22
CHLORIDE (AS CL)	MG/L	250	45.8	43.6	31.1	30.7	31.5
DISSOLVED SOLIDS, TOTAL	MG/L	1000	1,120	884	1,580	1,480	1,610
FLUORIDE	MG/L	1.5	0.28	0.24	0.18 J	0.22	0.24
NITROGEN, NITRATE (AS N)	MG/L	10	0.08 J	0.16 J	0.18 J	0.02 U	0.08 J
NITROGEN, NITRITE (AS N)	MG/L	1	0.02 U				
PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	MG/L	-	0.0029 U	0.018 J	0.0029 U	0.0097 J	0.0029 U
SULFATE	MG/L	250	279	250	702	772	172

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-239/240, H-3).

 $^{\ \, \}text{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value. } \\$

Location Identifie	r:		OW03B	OW04A	OW04A	OW04A	OW04A
Field Sample Identi	fier :		OW03B	OW04A	OW04A	OW04A-D	OW04A
Sample Type :			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Sample Depth Interva	Sample Depth Interval (ft) :		=	-	-	=	-
Date of Sample :			10/29/19	03/12/19	06/03/19	06/03/19	08/28/19
Parameter	Units	Criteria ¹				Field Duplicate	
MISCELLANEOUS							
ALKALINITY, TOTAL	MG/L	500	476	186	164	162	187
BROMIDE	MG/L	2	0.14 J	0.38 J	0.42	0.4	0.44
CHLORIDE (AS CL)	MG/L	250	34.2	30.3	31.4	31.9	33.2
DISSOLVED SOLIDS, TOTAL	MG/L	1000	1,210	1,010	943	964	991
FLUORIDE	MG/L	1.5	0.28	0.02 U	0.18 J	0.18 J	0.24
NITROGEN, NITRATE (AS N)	MG/L	10	0.22	0.28	0.22	0.26	0.1 J
NITROGEN, NITRITE (AS N)	MG/L	1	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	MG/L	-	0.011 J	0.0046 J	0.0029 U	0.0029 U	0.0032 J
SULFATE	MG/L	250	624	494	378	470	521

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-239/240, H-3).

 $^{\ \, \}text{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value. } \\$

Location Identifie	r:		OW04A	OW04B	OW04B	OW04B	OW04B
Field Sample Identi	fier :		OW04A	OW04B	OW04B	OW04B	OW04B
Sample Type :			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Sample Depth Interval (ft):		-	-	-	-	-	
Date of Sample :		10/25/19	03/12/19	06/03/19	08/28/19	10/30/19	
Parameter	Units	Criteria ¹					
MISCELLANEOUS							
ALKALINITY, TOTAL	MG/L	500	Not Analyzed	357	332	384	348
BROMIDE	MG/L	2	0.46 J	0.04 UJ	0.04 U	0.1 U	0.14 J
CHLORIDE (AS CL)	MG/L	250	33.4	73.7	74.4	74.7	66.6
DISSOLVED SOLIDS, TOTAL	MG/L	1000	902	1,260	1,310	1,300	1,190
FLUORIDE	MG/L	1.5	0.2	0.26	0.36	0.45 J	0.4
NITROGEN, NITRATE (AS N)	MG/L	10	0.1 J	0.12 J	0.02 U	0.05 U	0.06 J
NITROGEN, NITRITE (AS N)	MG/L	1	0.02 U	0.08 J	0.02 U	0.05 U	0.02 U
PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	MG/L	-	0.015 J	0.0046 J	0.0048 J	0.0029 U	0.0029 U
SULFATE	MG/L	250	516	531	560	524	536

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-239/240, H-3).

 $^{\ \, \}text{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value. } \\$

Location Identifie	r:		OW05A	OW05A	OW05B	OW05B	OW06A
Field Sample Identi	fier :		OW05A	OW05A	OW05B	OW05B	OW06A
Sample Type :			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Sample Depth Interval (ft):		•	-	-	-	-	
Date of Sample	Date of Sample :		05/30/19	10/25/19	05/30/19	10/29/19	06/03/19
Parameter	Units	Criteria ¹					
MISCELLANEOUS							
ALKALINITY, TOTAL	MG/L	500	266	Not Analyzed	398	400	262
BROMIDE	MG/L	2	0.5	0.52 J	0.04 U	0.1 J	0.44
CHLORIDE (AS CL)	MG/L	250	37.3	40	21.2	20.3	32.3
DISSOLVED SOLIDS, TOTAL	MG/L	1000	1,020	882	1,320	1,190	1,380
FLUORIDE	MG/L	1.5	0.26	0.24	0.22	0.24	0.16 J
NITROGEN, NITRATE (AS N)	MG/L	10	0.12 J	0.02 U	0.1 J	0.12 J	0.16 J
NITROGEN, NITRITE (AS N)	MG/L	1	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	MG/L	-	0.016 J	0.0097 J	0.0048 J	0.18	0.0029 U
SULFATE	MG/L	250	427	427	557	840	540

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-239/240, H-3).

 $^{\ \, \}text{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value. } \\$

Location Identifie	r:		OW06A	OW06B	OW06B	OW07A	OW07A
Field Sample Identi	fier :		OW06A	OW06B	OW06B	OW07A	OW07A
Sample Type:			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Sample Depth Interva	al (ft) :		-	-	-	-	-
Date of Sample :		10/28/19	06/03/19	10/25/19	05/28/19	10/24/19	
Parameter	Units	Criteria ¹					
MISCELLANEOUS							
ALKALINITY, TOTAL	MG/L	500	332	500	510	155	Not Analyzed
BROMIDE	MG/L	2	0.4	0.26	0.36 J	0.62	0.58 J
CHLORIDE (AS CL)	MG/L	250	29.2	62.6	65.8	39.1	40.6
DISSOLVED SOLIDS, TOTAL	MG/L	1000	1,370	1,270	1,120	1,570	1,600
FLUORIDE	MG/L	1.5	0.22	0.24	0.22	0.16 J	0.22
NITROGEN, NITRATE (AS N)	MG/L	10	0.02 U	0.02 U	0.14 J	0.24 J	0.14 J
NITROGEN, NITRITE (AS N)	MG/L	1	0.02 U				
PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	MG/L	-	0.0065 J	0.0029 U	0.0065 J	0.0029 U	0.0048 J
SULFATE	MG/L	250	810	440	419	980	1,010

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-238, Pu-239/240, H-3).

 $^{\ \, \}text{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value. } \\$

Location Identifie	r:		OW07B	OW07B	OW11A	OW11A	OW11A
Field Sample Identi	fier :		OW07B	OW07B-G	OW11A	OW11A	OW11A-D
Sample Type :			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Sample Depth Interva	al (ft) :		=	-	-	-	-
Date of Sample	:		05/28/19	10/28/19	05/30/19	10/29/19	10/29/19
Parameter	Units	Criteria ¹					Field Duplicate
MISCELLANEOUS							
ALKALINITY, TOTAL	MG/L	500	386	444	223	307	312
BROMIDE	MG/L	2	0.24	0.22	0.34	0.34	0.34
CHLORIDE (AS CL)	MG/L	250	27.8	22.4	28.5	26.7	26.2
DISSOLVED SOLIDS, TOTAL	MG/L	1000	1,510	1,580	1,090	1,070	1,090
FLUORIDE	MG/L	1.5	0.26	0.24	0.16 J	0.22	0.2
NITROGEN, NITRATE (AS N)	MG/L	10	0.2 J	0.08 J	0.06 J	0.06 J	0.02 UJ
NITROGEN, NITRITE (AS N)	MG/L	1	0.02 U				
PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	MG/L	-	0.0029 U	0.0097 J	0.0064 J	0.018 J	0.013 J
SULFATE	MG/L	250	1,000	758	564	600	627

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-238, Pu-239/240, H-3).

 $^{\ \, \}text{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value. } \\$

Location Identifie	r:		OW11B	OW11B	OW12A	OW12A	OW12B
Field Sample Identi	fier :		OW11B	OW11B	OW12A	OW12A	OW12B
Sample Type :			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Sample Depth Interva	al (ft) :		-	-	=	-	-
Date of Sample :			05/30/19	10/28/19	05/31/19	10/24/19	05/31/19
Parameter	Units	Criteria ¹					
MISCELLANEOUS							
ALKALINITY, TOTAL	MG/L	500	354	371	216	283	232
BROMIDE	MG/L	2	0.18 J	0.22	0.38	0.3 J	0.04 U
CHLORIDE (AS CL)	MG/L	250	36.8	35.8	27.3	25	4.7
DISSOLVED SOLIDS, TOTAL	MG/L	1000	1,450	1,410	1,470	1,310	834
FLUORIDE	MG/L	1.5	0.24	0.22	0.24	0.26	0.48
NITROGEN, NITRATE (AS N)	MG/L	10	0.02 U	0.1 J	0.08 J	0.44	23.6
NITROGEN, NITRITE (AS N)	MG/L	1	0.02 U				
PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	MG/L	-	0.0029 U				
SULFATE	MG/L	250	729	680 J	807	776	275

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-238, Pu-239/240, H-3).

 $^{\ \, \}text{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value. } \\$

Location Identifie	r:		OW12B	OW13A	OW13A	OW15A	OW15A
Field Sample Identi	fier :		OW12B	OW13A	OW13A	OW15A	OW15A
Sample Type :			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Sample Depth Interva	al (ft) :		-	-	=	-	-
Date of Sample :		10/24/19	05/31/19	10/24/19	05/28/19	10/25/19	
Parameter	Units	Criteria ¹					
MISCELLANEOUS							
ALKALINITY, TOTAL	MG/L	500	313	199	Not Analyzed	87	Not Analyzed
BROMIDE	MG/L	2	0.04 UJ	0.6	0.48 J	0.88	0.74 J
CHLORIDE (AS CL)	MG/L	250	4.5	42.8	40.8	72	69.4
DISSOLVED SOLIDS, TOTAL	MG/L	1000	708	1,770	1,650	1,790	1,740
FLUORIDE	MG/L	1.5	0.5	0.22	0.24	0.24	0.24
NITROGEN, NITRATE (AS N)	MG/L	10	6.8	0.02 U	0.02 U	0.22 J	0.02 U
NITROGEN, NITRITE (AS N)	MG/L	1	0.16 J	0.02 U	0.02 U	0.02 U	0.02 U
PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	MG/L	-	0.029 J	0.0029 U	0.0029 U	0.0029 U	0.0029 U
SULFATE	MG/L	250	292	1,000	1,080	1,570	1,060

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-238, Pu-239/240, H-3).

 $^{\ \, \}text{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value. } \\$

Location Identifie Field Sample Identi			OW17A OW17A	OW17A OW17A
Sample Type : Sample Depth Interv	al (ft) :		Groundwater -	Groundwater -
Date of Sample	:		05/29/19	10/24/19
Parameter	Units	Criteria ¹		
MISCELLANEOUS				
ALKALINITY, TOTAL	MG/L	500	122	Not Analyzed
BROMIDE	MG/L	2	0.46	0.34 J
CHLORIDE (AS CL)	MG/L	250	37.5	32.6
DISSOLVED SOLIDS, TOTAL	MG/L	1000	1,940	1,790
FLUORIDE	MG/L	1.5	0.16 J	0.14 J
NITROGEN, NITRATE (AS N)	MG/L	10	0.16 J	0.24
NITROGEN, NITRITE (AS N)	MG/L	1	0.02 U	0.02 U
PHOSPHORUS, TOTAL ORTHOPHOSPHATE (AS PO4)	MG/L	-	0.019 J	0.0065 J
SULFATE	MG/L	250	1,230	1,110

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-238, Pu-239/240, H-3).

 $^{\ \, \}text{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value. } \\$

Location Identifi	er:		302A	302A	411A	411A	505
Field Sample Ident	ifier :		302A	302A	411A	411A	505
Sample Type	:		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Sample Depth Interv	Sample Depth Interval (ft):		-	-	-	-	-
Date of Sample	e:		05/28/19	10/29/19	05/30/19	10/28/19	06/03/19
Parameter	Units	Criteria ¹					
RADIONUCLIDES							
RADIUM-226	PCI/L	3	0.11 U	0.31 U	0.13 U	0.44 J	0.28 U
TOTAL URANIUM	UG/L	30	20.6	26.9	22.1	18.5	45.2
RADIONUCLIDES (FILTERED)							
RADIUM-226	PCI/L	3	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed
TOTAL URANIUM	UG/L	30	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-238, Pu-239/240, H-3).

 $^{\ \, \}text{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value. } \\$

Location Identifie	er:		505	A42	A42	A43	A43
Field Sample Identifier :			505	A42	A42	A43	A43
Sample Type :			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Sample Depth Interv	al (ft) :		-	-	-	-	-
Date of Sample	:		10/28/19	05/30/19	10/29/19	05/30/19	10/29/19
Parameter	Units	Criteria ¹					
RADIONUCLIDES							
RADIUM-226	PCI/L	3	Not Analyzed	0.3 U	0.48 U	0.2 U	0.22 U
TOTAL URANIUM	UG/L	30	43.8	34.7	40.4	40.9	43.7
RADIONUCLIDES (FILTERED)							
RADIUM-226	PCI/L	3	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed
TOTAL URANIUM	UG/L	30	Not Analyzed	Not Analyzed	42.2	Not Analyzed	Not Analyzed

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-238, Pu-239/240, H-3).

 $^{\ \, \}text{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value. } \\$

Location Identif	ier :		A45	A45	MW422	MW862	MW862
Field Sample Iden	tifier :		A45	A45	MW422	MW862	MW862
Sample Type :		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	
Sample Depth Inter	val (ft) :		-	-	-	-	-
Date of Sample	e:		05/31/19	10/25/19	10/28/19	06/03/19	10/25/19
Parameter	Units	Criteria ¹					
RADIONUCLIDES							
RADIUM-226	PCI/L	3	0.24 U	0.42 U	0.57 J	0.29 U	0.29 U
TOTAL URANIUM	UG/L	30	34	28.1	115	23.4	23.3
RADIONUCLIDES (FILTERED)							
RADIUM-226	PCI/L	3	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed
TOTAL URANIUM	UG/L	30	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-238, Pu-239/240, H-3).

 $^{\ \, \}text{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value. } \\$

Location Identifi	er :		MW863	MW863	MW921	MW921	MW934
Field Sample Ident	tifier :		MW863	MW863	MW921	MW921	MW934
Sample Type :		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	
Sample Depth Interv	val (ft) :		-	-	-	-	1
Date of Sample	e :		06/03/19	10/25/19	06/03/19	10/24/19	05/30/19
Parameter	Units	Criteria ¹					
RADIONUCLIDES							
RADIUM-226	PCI/L	3	-0.04 U	0.4	0.04 U	0.39 U	0.31
TOTAL URANIUM	UG/L	30	2.95	3.07	34.6	30.2	35.3
RADIONUCLIDES (FILTERED)							
RADIUM-226	PCI/L	3	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed
TOTAL URANIUM	UG/L	30	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-238, Pu-239/240, H-3).

 $^{\ \, \}text{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value. } \\$

Location Identifi	er :		MW934	MW935	MW935	MW938	MW938
Field Sample Ident	ifier :		MW934	MW935	MW935	MW938	MW938
Sample Type :		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	
Sample Depth Interv	/al (ft) :		-	-	-	-	-
Date of Sample	e :		10/28/19	05/28/19	10/25/19	05/28/19	10/25/19
Parameter	Units	Criteria ¹					
RADIONUCLIDES							
RADIUM-226	PCI/L	3	0.29 U	Not Analyzed	0.37 U	-0.03 U	0.27 U
TOTAL URANIUM	UG/L	30	30.8	10.8	18.4	18.8	21.6
RADIONUCLIDES (FILTERED)							
RADIUM-226	PCI/L	3	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed
TOTAL URANIUM	UG/L	30	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-238, Pu-239/240, H-3).

 $[\]label{eq:concentration} \textbf{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value.}$

Location Identifi	er :		MW943	MW943	MW944	MW944	MW945
Field Sample Ident	ifier :		MW943	MW943	MW944	MW944	MW945
Sample Type :		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	
Sample Depth Interv	Sample Depth Interval (ft) :		-	-	-	-	-
Date of Sample	e:		06/03/19	10/25/19	05/30/19	10/24/19	05/30/19
Parameter	Units	Criteria ¹					
RADIONUCLIDES							
RADIUM-226	PCI/L	3	0.13 U	0.19 U	0.1 U	0.24 U	0 U
TOTAL URANIUM	UG/L	30	20.7	22.1	5.25	8.27	11.2
RADIONUCLIDES (FILTERED)							
RADIUM-226	PCI/L	3	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed
TOTAL URANIUM	UG/L	30	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-238, Pu-239/240, H-3).

 $^{\ \, \}text{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value. } \\$

Location Identif	ier :		MW945	MW946	MW946	MW947	MW948
Field Sample Iden	tifier :		MW945	MW946	MW946	MW947	MW948
Sample Type :		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	
Sample Depth Inter	val (ft) :		-	-	-	-	-
Date of Sample :			10/24/19	05/30/19	10/28/19	05/30/19	05/30/19
Parameter	Units	Criteria ¹					
RADIONUCLIDES							
RADIUM-226	PCI/L	3	0.24 U	0.05 U	0.44 U	0.31	0.22
TOTAL URANIUM	UG/L	30	9.71	40.7	29.9	12.4	31.7
RADIONUCLIDES (FILTERED)							
RADIUM-226	PCI/L	3	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed
TOTAL URANIUM	UG/L	30	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-238, Pu-239/240, H-3).

 $^{\ \, \}text{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value. } \\$

Location Identif	ier :		MW948	MW949	MW949	MW950	MW950
Field Sample Iden	tifier :		MW948	MW949	MW949	MW950	MW950
Sample Type	Sample Type:		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Sample Depth Inter	val (ft) :		-	-	-	-	-
Date of Sampl	Date of Sample :		10/28/19	05/30/19	10/28/19	05/31/19	10/25/19
Parameter	Units	Criteria ¹					
RADIONUCLIDES							
RADIUM-226	PCI/L	3	0.5 U	0.07 U	0.44 J	0.1 U	0.22 U
TOTAL URANIUM	UG/L	30	33.4	1.08	0.721	31	30.6
RADIONUCLIDES (FILTERED)							
RADIUM-226	PCI/L	3	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed
TOTAL URANIUM	UG/L	30	Not Analyzed	Not Analyzed	Not Analyzed	29.7	30.8

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-238, Pu-239/240, H-3).

 $^{\ \, \}text{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value. } \\$

Location Identifie	er:		MW951	MW951	MW952	MW952	MW954
Field Sample Identi	fier :		MW951	MW951	MW952	MW952	MW954
Sample Type :	Type:		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Sample Depth Interv	al (ft) :		-	-	-	-	-
Date of Sample	:		06/03/19	10/28/19	05/28/19	10/28/19	05/28/19
Parameter	Units	Criteria ¹					
RADIONUCLIDES							
RADIUM-226	PCI/L	3	0.05 U	0.31 U	0.23 U	0.24 U	0.13 U
TOTAL URANIUM	UG/L	30	2,791	3,052	230	128	532
RADIONUCLIDES (FILTERED)							
RADIUM-226	PCI/L	3	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed
TOTAL URANIUM	UG/L	30	2,930	3,097	Not Analyzed	Not Analyzed	Not Analyzed

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-238, Pu-239/240, H-3).

 $^{\ \, \}text{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value. } \\$

Location Identifie	er:		MW954	MW955	MW955	MW956	MW956
Field Sample Identi	fier :		MW954	MW955	MW955	MW956	MW956
Sample Type :	Туре :		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Sample Depth Interv	al (ft) :		-	-	-	-	-
Date of Sample	:		10/24/19	05/28/19	10/24/19	05/31/19	10/24/19
Parameter	Units	Criteria ¹					
RADIONUCLIDES							
RADIUM-226	PCI/L	3	0.38	0.12 U	0.25 U	0.14 U	0.33 U
TOTAL URANIUM	UG/L	30	720	34.7	39.6	65.8	59.8
RADIONUCLIDES (FILTERED)							
RADIUM-226	PCI/L	3	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed
TOTAL URANIUM	UG/L	30	Not Analyzed	Not Analyzed	Not Analyzed	65.9	50.4

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-238, Pu-239/240, H-3).

 $^{\ \, \}text{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value. } \\$

Location Identifie	er:		MW957	MW957	MW958	MW958	MW959
Field Sample Identi	fier :		MW957	MW957	MW958	MW958	MW959
Sample Type :	ype :		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Sample Depth Interv	al (ft) :		-	-	-	-	-
Date of Sample	:		05/28/19	10/28/19	05/28/19	10/28/19	05/31/19
Parameter	Units	Criteria ¹					
RADIONUCLIDES							
RADIUM-226	PCI/L	3	0.07 U	0.23 U	0.08 U	0.29 J	0.32 U
TOTAL URANIUM	UG/L	30	3,290	3,234	379	298	161
RADIONUCLIDES (FILTERED)							
RADIUM-226	PCI/L	3	0.34 U	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed
TOTAL URANIUM	UG/L	30	3,139	3,487	231	283	164

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-238, Pu-239/240, H-3).

 $[\]label{eq:concentration} \textbf{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value.}$

Location Identifie	er:		MW959	MW960	MW960	OW03A	OW03A
Field Sample Identi	fier :		MW959	MW960	MW960	OW03A	OW03A
Sample Type :	Sample Type:		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Sample Depth Interv	al (ft) :		-	-	-	-	-
Date of Sample	:		10/25/19	05/31/19	10/29/19	06/03/19	10/29/19
Parameter	Units	Criteria ¹					
RADIONUCLIDES							
RADIUM-226	PCI/L	3	0.21 U	0.39 U	0.31 U	0.54 U	0.21 U
TOTAL URANIUM	UG/L	30	94.3	16.1	1,232	10.5	11.4
RADIONUCLIDES (FILTERED)							
RADIUM-226	PCI/L	3	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed
TOTAL URANIUM	UG/L	30	122	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-238, Pu-239/240, H-3).

 $^{\ \, \}text{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value. } \\$

Location Identifi	er :		OW03B	OW03B	OW04A	OW04A	OW04A
Field Sample Ident	ifier :		OW03B	OW03B	OW04A	OW04A	OW04A-D
Sample Type	Sample Type : Sample Depth Interval (ft) :		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Sample Depth Interv			-	-	-	-	-
Date of Sample :			06/03/19	10/29/19	03/12/19	06/03/19	06/03/19
Parameter	Units	Criteria ¹					Field Duplicate
RADIONUCLIDES							
RADIUM-226	PCI/L	3	0.22 U	0.25 U	0.05 U	0.15 U	-0.08 U
TOTAL URANIUM	UG/L	30	15.2	16.8	3.19	2.28	2.24
RADIONUCLIDES (FILTERED)							
RADIUM-226	PCI/L	3	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed
TOTAL URANIUM	UG/L	30	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-238, Pu-239/240, H-3).

 $^{\ \, \}text{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value. } \\$

Location Identif	ier :		OW04A	OW04A	OW04B	OW04B	OW04B
Field Sample Iden	tifier :		OW04A	OW04A	OW04B	OW04B	OW04B
Sample Type	Sample Type :		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Sample Depth Inter	val (ft) :		-	-	-	-	-
Date of Sample	Date of Sample :		08/28/19	10/25/19	03/12/19	06/03/19	08/28/19
Parameter	Units	Criteria ¹					
RADIONUCLIDES							
RADIUM-226	PCI/L	3	0.19 U	0.16 U	0.07 U	0.08 U	0.15 U
TOTAL URANIUM	UG/L	30	2.03	2.4	34.3	37.9	30.8
RADIONUCLIDES (FILTERED)							
RADIUM-226	PCI/L	3	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed
TOTAL URANIUM	UG/L	30	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-238, Pu-239/240, H-3).

 $^{\ \, \}text{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value. } \\$

Location Identifie	er:		OW04B	OW05A	OW05A	OW05B	OW05B
Field Sample Identi	fier :		OW04B	OW05A	OW05A	OW05B	OW05B
Sample Type :	Sample Type :		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Sample Depth Interv	al (ft) :		-	-	-	-	-
Date of Sample	:		10/30/19	05/30/19	10/25/19	05/30/19	10/29/19
Parameter	Units	Criteria ¹					
RADIONUCLIDES							
RADIUM-226	PCI/L	3	0.2 U	0.36 U	0.27 U	0.07 U	0.21 U
TOTAL URANIUM	UG/L	30	32.7	2.06	1.74	13.6	15.5
RADIONUCLIDES (FILTERED)							
RADIUM-226	PCI/L	3	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed
TOTAL URANIUM	UG/L	30	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-238, Pu-239/240, H-3).

 $[\]label{eq:concentration} \textbf{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value.}$

Location Identifie	er:		OW06A	OW06A	OW06B	OW06B	OW07A
Field Sample Identi	fier :		OW06A	OW06A	OW06B	OW06B	OW07A
Sample Type :		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	
Sample Depth Interv	al (ft) :		-	-	-	-	-
Date of Sample	:		06/03/19	10/28/19	06/03/19	10/25/19	05/28/19
Parameter	Units	Criteria ¹					
RADIONUCLIDES							
RADIUM-226	PCI/L	3	0 U	0.23 U	0.17 U	0.34 U	0.17 U
TOTAL URANIUM	UG/L	30	1.89	1.42	16.8	16.4	1.58
RADIONUCLIDES (FILTERED)							
RADIUM-226	PCI/L	3	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed
TOTAL URANIUM	UG/L	30	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-238, Pu-239/240, H-3).

 $[\]label{eq:concentration} \textbf{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value.}$

Location Identifie	er:		OW07A	OW07B	OW07B	OW11A	OW11A
Field Sample Ident	fier :		OW07A	OW07B	OW07B	OW11A	OW11A
Sample Type:	Sample Type :		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Sample Depth Interv	al (ft) :		-	-	-	-	-
Date of Sample	:		10/24/19	05/28/19	10/24/19	05/30/19	10/29/19
Parameter	Units	Criteria ¹					
RADIONUCLIDES							
RADIUM-226	PCI/L	3	0.23	0.05 U	0.3	0.12 U	0.31 U
TOTAL URANIUM	UG/L	30	1.67	18.3	20.5	4.14	1.9
RADIONUCLIDES (FILTERED)							
RADIUM-226	PCI/L	3	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed
TOTAL URANIUM	UG/L	30	Not Analyzed	19	21.4	Not Analyzed	Not Analyzed

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-238, Pu-239/240, H-3).

 $^{\ \, \}text{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value. } \\$

Location Identif	ier :		OW11A	OW11B	OW11B	OW12A	OW12A
Field Sample Iden	tifier :		OW11A-D	OW11B	OW11B	OW12A	OW12A
Sample Type :		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	
Sample Depth Inter	Sample Depth Interval (ft) : Date of Sample :		-	-	-	-	-
Date of Sample			10/29/19	05/30/19	10/28/19	05/31/19	10/24/19
Parameter	Units	Criteria ¹	Field Duplicate				
RADIONUCLIDES							
RADIUM-226	PCI/L	3	0.44 U	-0.03 U	0.32 U	0.56	0.32 U
TOTAL URANIUM	UG/L	30	1.63	450	387	3.71	3.39
RADIONUCLIDES (FILTERED)							
RADIUM-226	PCI/L	3	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed
TOTAL URANIUM	UG/L	30	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-238, Pu-239/240, H-3).

 $[\]label{eq:concentration} \textbf{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value.}$

Location Identifie	er:		OW12B	OW12B	OW13A	OW13A	OW15A
Field Sample Identi	fier :		OW12B	OW12B	OW13A	OW13A	OW15A
Sample Type :	Sample Type :		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Sample Depth Interv	al (ft) :		-	-	-	-	-
Date of Sample	:		05/31/19	10/24/19	05/31/19	10/24/19	05/28/19
Parameter	Units	Criteria ¹					
RADIONUCLIDES							
RADIUM-226	PCI/L	3	-0.12 U	0.28 U	0.56	0.39 U	1.75
TOTAL URANIUM	UG/L	30	38.2	36.5	2.35	3.15	0.353
RADIONUCLIDES (FILTERED)							
RADIUM-226	PCI/L	3	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed
TOTAL URANIUM	UG/L	30	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-238, Pu-239/240, H-3).

 $[\]label{eq:concentration} \textbf{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value.}$

Location Identifie	r:		OW15A	OW15B	OW17A	OW17A
Field Sample Identi	fier :		OW15A	OW15B	OW17A	OW17A
Sample Type :			Groundwater	Groundwater	Groundwater	Groundwater
Sample Depth Interva	al (ft) :		-	-	-	-
Date of Sample	:		10/25/19	05/28/19	05/29/19	10/24/19
Parameter	Units	Criteria ¹				
RADIONUCLIDES						
RADIUM-226	PCI/L	3	0.42	1.93	0.26 U	0.18 U
TOTAL URANIUM	UG/L	30	0.493	Not Analyzed	2.05	1.04 J
RADIONUCLIDES (FILTERED)						
RADIUM-226	PCI/L	3	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed
TOTAL URANIUM	UG/L	30	Not Analyzed	Not Analyzed	Not Analyzed	Not Analyzed

Concentration Exceeds Criteria

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-238, Pu-239/240, H-3).

 $^{\ \, \}text{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value. } \\$

Location Identifie	r :		411A	411A	411A	MW422	MW934
Field Sample Identifier:			411A	411A	411A-D	MW422	MW934
Sample Type :			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater -
Sample Depth Interva	ıl (ft) :		-	-	-	-	
Date of Sample	:		05/30/19	10/28/19	10/28/19	10/28/19	05/30/19
Parameter	Units	Criteria ¹			Field Duplicate		
VOLATILE ORGANIC ANALYSES							
1,1,2,2-TETRACHLOROETHANE	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
1,1,2-TRICHLOROETHANE	UG/L	1	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
1,1-DICHLOROETHANE	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
1,1-DICHLOROETHENE	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
1,2,3-TRICHLOROBENZENE	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
1,2,4-TRICHLOROBENZENE	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
1,2-DIBROMO-3-CHLOROPROPANE	UG/L	0.04	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U
1,2-DIBROMOETHANE (ETHYLENE DIBROMIDE)	UG/L	0.006	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
1,2-DICHLOROBENZENE	UG/L	3	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
1,2-DICHLOROETHANE	UG/L	0.6	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
1,2-DICHLOROPROPANE	UG/L	1	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
1,3-DICHLOROBENZENE	UG/L	3	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
1,4-DICHLOROBENZENE	UG/L	3	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
2-HEXANONE	UG/L	50	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U
ACETONE	UG/L	50	1.6 U	4.1 J	3.3 J	1.6 U	4.4 J
BENZENE	UG/L	1	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
BROMOCHLOROMETHANE	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
BROMODICHLOROMETHANE	UG/L	50	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U

Concentration Exceeds Criteria

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-238, Pu-239/240, H-3).

 $^{\ \, \}text{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value. } \\$

Location Identifie			411A	411A	411A	MW422	MW934
Field Sample Identi	fier :		411A	411A	411A-D	MW422	MW934
Sample Type :			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Sample Depth Interval (ft) :			-	-	-	-	-
Date of Sample	:	1	05/30/19	10/28/19	10/28/19 Field Duplicate	10/28/19	05/30/19
Parameter	Units	Criteria ¹			Fleid Duplicate		
VOLATILE ORGANIC ANALYSES							
BROMOFORM	UG/L	50	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
BROMOMETHANE	UG/L	5	0.33 U	0.33 UJ	0.33 U	0.33 UJ	0.33 U
CARBON DISULFIDE	UG/L	60	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
CARBON TETRACHLORIDE	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
CHLOROBENZENE	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
CHLOROETHANE	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
CHLOROFORM	UG/L	7	0.33 U	0.33 U	0.33 U	0.33 U	1.7
CHLOROMETHANE	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
CIS-1,2-DICHLOROETHYLENE	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
CIS-1,3-DICHLOROPROPENE	UG/L	0.4	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
CYCLOHEXANE	UG/L	-	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
DIBROMOCHLOROMETHANE	UG/L	50	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
DICHLORODIFLUOROMETHANE	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
ETHYLBENZENE	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
ISOPROPYLBENZENE (CUMENE)	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
M+P-XYLENE	UG/L	5	0.66 U	0.66 U	0.66 U	0.66 U	0.66 U
METHYL ACETATE	UG/L	-	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
METHYL ETHYL KETONE (2-BUTANONE)	UG/L	50	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U
METHYL ISOBUTYL KETONE (4-METHYL-2- PENTANONE)	UG/L	-	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U

Concentration Exceeds Criteria

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-238, Pu-239/240, H-3).

 $^{\ \, \}text{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value. } \\$

Location Identif	ier :		411A	411A	411A	MW422	MW934
Field Sample Identifier : Sample Type :		411A	411A	411A-D	MW422	MW934	
		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater	
Sample Depth Inter	val (ft) :		-	-	-	-	-
Date of Sampl	e :		05/30/19	10/28/19	10/28/19	10/28/19	05/30/19
Parameter	Units	Criteria ¹			Field Duplicate		
VOLATILE ORGANIC ANALYSES							
METHYLCYCLOHEXANE	UG/L	-	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
METHYLENE CHLORIDE	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
O-XYLENE (1,2-DIMETHYLBENZENE)	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
STYRENE	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
TERT-BUTYL METHYL ETHER	UG/L	10	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
TETRACHLOROETHYLENE(PCE)	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
TOLUENE	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
TRANS-1,2-DICHLOROETHENE	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
TRANS-1,3-DICHLOROPROPENE	UG/L	0.4	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
TRICHLOROETHANE	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
TRICHLOROETHYLENE (TCE)	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
TRICHLOROFLUOROMETHANE	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
VINYL CHLORIDE	UG/L	2	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
XYLENES, TOTAL	UG/L	-	1 U	1 U	1 U	1 U	1 U

Concentration Exceeds Criteria

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-238, Pu-239/240, H-3).

 $^{\ \, \}text{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value. } \\$

Location Identifie	r:		MW934	MW947	MW948	MW948	MW948
Field Sample Identif	ier :		MW934-G	MW947	MW948	MW948	MW948
Sample Type :			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater -
Sample Depth Interva	l (ft) :		-	- 05/30/19	-	05/30/19	
Date of Sample	:		10/29/19		05/30/19		10/28/19
Parameter	Units	Criteria ¹			Field Duplicate		
VOLATILE ORGANIC ANALYSES							
1,1,2,2-TETRACHLOROETHANE	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
1,1,2-TRICHLOROETHANE	UG/L	1	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
1,1-DICHLOROETHANE	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
1,1-DICHLOROETHENE	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
1,2,3-TRICHLOROBENZENE	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
1,2,4-TRICHLOROBENZENE	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
1,2-DIBROMO-3-CHLOROPROPANE	UG/L	0.04	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U
1,2-DIBROMOETHANE (ETHYLENE DIBROMIDE)	UG/L	0.006	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
1,2-DICHLOROBENZENE	UG/L	3	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
1,2-DICHLOROETHANE	UG/L	0.6	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
1,2-DICHLOROPROPANE	UG/L	1	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
1,3-DICHLOROBENZENE	UG/L	3	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
1,4-DICHLOROBENZENE	UG/L	3	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
2-HEXANONE	UG/L	50	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U
ACETONE	UG/L	50	1.6 U	1.6 U	7.7	6	1.6 U
BENZENE	UG/L	1	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
BROMOCHLOROMETHANE	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
BROMODICHLOROMETHANE	UG/L	50	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U

Concentration Exceeds Criteria

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-238, Pu-239/240, H-3).

 $^{\ \, \}text{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value. } \\$

Location Identifie			MW934 MW934-G	MW947	MW948	MW948	MW948
Field Sample Identi	rier :		Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Sample Type :	al /f+\ .		- Groundwater	Groundwater	Groundwater	- Groundwater	- Glouliuwatei
Sample Depth Interval (ft) : Date of Sample :			10/29/19	05/30/19	05/30/19	05/30/19	10/28/19
		1	10/23/13	03/30/13	Field Duplicate	03/30/13	10/20/13
Parameter	Units	Criteria ¹					
VOLATILE ORGANIC ANALYSES							
BROMOFORM	UG/L	50	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
BROMOMETHANE	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
CARBON DISULFIDE	UG/L	60	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
CARBON TETRACHLORIDE	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
CHLOROBENZENE	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
CHLOROETHANE	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
CHLOROFORM	UG/L	7	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
CHLOROMETHANE	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
CIS-1,2-DICHLOROETHYLENE	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
CIS-1,3-DICHLOROPROPENE	UG/L	0.4	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
CYCLOHEXANE	UG/L	-	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
DIBROMOCHLOROMETHANE	UG/L	50	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
DICHLORODIFLUOROMETHANE	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
ETHYLBENZENE	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
ISOPROPYLBENZENE (CUMENE)	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
M+P-XYLENE	UG/L	5	0.66 U	0.66 U	0.66 U	0.66 U	0.66 U
METHYL ACETATE	UG/L	-	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
METHYL ETHYL KETONE (2-BUTANONE)	UG/L	50	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U
METHYL ISOBUTYL KETONE (4-METHYL-2- PENTANONE)	UG/L	-	1.6 U	1.6 U	1.6 U	1.6 U	1.6 U

Concentration Exceeds Criteria

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-238, Pu-239/240, H-3).

 $^{\ \, \}text{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value. } \\$

Location Identif	ier :		MW934	MW947	MW948	MW948	MW948
Field Sample Identifier : Sample Type :		MW934-G	MW947	MW948	MW948	MW948	
			Groundwater	Groundwater	Groundwater	Groundwater	Groundwater
Sample Depth Inter			-	-	-	-	-
Date of Sampl	e :		10/29/19	05/30/19	05/30/19	05/30/19	10/28/19
Parameter	Units	Criteria ¹			Field Duplicate		
VOLATILE ORGANIC ANALYSES							
METHYLCYCLOHEXANE	UG/L	-	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
METHYLENE CHLORIDE	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
O-XYLENE (1,2-DIMETHYLBENZENE)	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
STYRENE	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
TERT-BUTYL METHYL ETHER	UG/L	10	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
TETRACHLOROETHYLENE(PCE)	UG/L	5	6	0.33 U	0.33 U	0.33 U	0.33 U
TOLUENE	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
TRANS-1,2-DICHLOROETHENE	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
TRANS-1,3-DICHLOROPROPENE	UG/L	0.4	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
TRICHLOROETHANE	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
TRICHLOROETHYLENE (TCE)	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
TRICHLOROFLUOROMETHANE	UG/L	5	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
VINYL CHLORIDE	UG/L	2	0.33 U	0.33 U	0.33 U	0.33 U	0.33 U
XYLENES, TOTAL	UG/L	-	1 U	1 U	1 U	1 U	1 U

Concentration Exceeds Criteria

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-238, Pu-239/240, H-3).

U - Not detected above the reported quantitation limit.; R - The data is rejected.; J - The reported concentration is an estimated value.

Location Identifie Field Sample Identifi Sample Type :	fier :		MW949 MW949 Groundwater	MW949 MW949 Groundwater	MW949 MW949 Groundwater
Sample Depth Interva			- 05/30/19	- 05/30/19	- 10/29/10
Date of Sample Parameter	Units	Criteria ¹	Field Duplicate	05/30/19	10/28/19
VOLATILE ORGANIC ANALYSES					
1,1,2,2-TETRACHLOROETHANE	UG/L	5	0.33 U	0.33 U	0.33 U
1,1,2-TRICHLORO-1,2,2-TRIFLUOROETHANE	UG/L	5	0.33 U	0.33 U	0.33 U
1,1,2-TRICHLOROETHANE	UG/L	1	0.33 U	0.33 U	0.33 U
1,1-DICHLOROETHANE	UG/L	5	0.33 U	0.33 U	0.33 U
1,1-DICHLOROETHENE	UG/L	5	0.33 U	0.33 U	0.33 U
1,2,3-TRICHLOROBENZENE	UG/L	5	0.33 U	0.33 U	0.33 U
1,2,4-TRICHLOROBENZENE	UG/L	5	0.33 U	0.33 U	0.33 U
1,2-DIBROMO-3-CHLOROPROPANE	UG/L	0.04	1.6 U	1.6 U	1.6 U
1,2-DIBROMOETHANE (ETHYLENE DIBROMIDE)	UG/L	0.006	0.33 U	0.33 U	0.33 U
1,2-DICHLOROBENZENE	UG/L	3	0.33 U	0.33 U	0.33 U
1,2-DICHLOROETHANE	UG/L	0.6	0.33 U	0.33 U	0.33 U
1,2-DICHLOROPROPANE	UG/L	1	0.33 U	0.33 U	0.33 U
1,3-DICHLOROBENZENE	UG/L	3	0.33 U	0.33 U	0.33 U
1,4-DICHLOROBENZENE	UG/L	3	0.33 U	0.33 U	0.33 U
2-HEXANONE	UG/L	50	1.6 U	1.6 U	1.6 U
ACETONE	UG/L	50	4.6 J	4.4 J	4.3 J
BENZENE	UG/L	1	0.33 U	0.33 U	0.33 U
BROMOCHLOROMETHANE	UG/L	5	0.33 U	0.33 U	0.33 U
BROMODICHLOROMETHANE	UG/L	50	0.33 U	0.33 U	0.33 U

Concentration Exceeds Criteria

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-238, Pu-239/240, H-3).

 $^{\ \, \}text{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value. } \\$

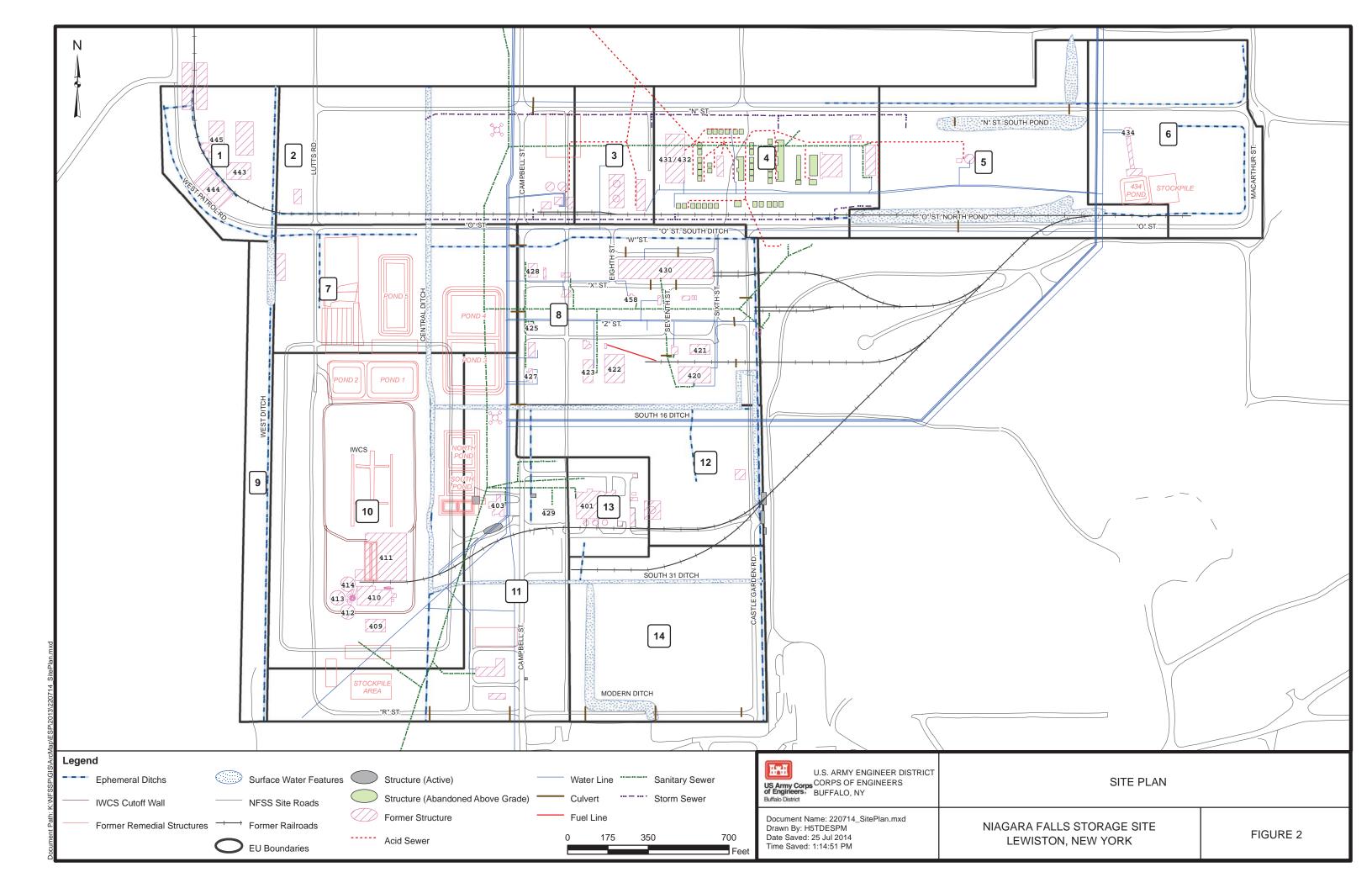
Location Identifie	er:		MW949	MW949	MW949	
Field Sample Identi	fier :		MW949	MW949	MW949	
Sample Type:			Groundwater	Groundwater	Groundwater -	
Sample Depth Interv	al (ft) :		-	-		
Date of Sample :			05/30/19	05/30/19	10/28/19	
Parameter	Units	Criteria ¹	Field Duplicate			
VOLATILE ORGANIC ANALYSES						
BROMOFORM	UG/L	50	0.33 U	0.33 U	0.33 U	
BROMOMETHANE	UG/L	5	0.33 U	0.33 U	0.33 UJ	
CARBON DISULFIDE	UG/L	60	0.33 U	0.33 U	0.33 U	
CARBON TETRACHLORIDE	UG/L	5	0.33 U	0.33 U	0.33 U	
CHLOROBENZENE	UG/L	5	0.33 U	0.33 U	0.33 U	
CHLOROETHANE	UG/L	5	0.33 U	0.33 U	0.33 U	
CHLOROFORM	UG/L	7	0.33 U	0.33 U	0.33 U	
CHLOROMETHANE	UG/L	5	0.33 U	0.33 U	0.33 U	
CIS-1,2-DICHLOROETHYLENE	UG/L	5	0.33 U	0.33 U	0.33 U	
CIS-1,3-DICHLOROPROPENE	UG/L	0.4	0.33 U	0.33 U	0.33 U	
CYCLOHEXANE	UG/L	-	0.33 U	0.33 U	0.33 U	
DIBROMOCHLOROMETHANE	UG/L	50	0.33 U	0.33 U	0.33 U	
DICHLORODIFLUOROMETHANE	UG/L	5	0.33 U	0.33 U	0.33 U	
ETHYLBENZENE	UG/L	5	0.33 U	0.33 U	0.33 U	
ISOPROPYLBENZENE (CUMENE)	UG/L	5	0.33 U	0.33 U	0.33 U	
M+P-XYLENE	UG/L	5	0.66 U	0.66 U	0.66 U	
METHYL ACETATE	UG/L	-	0.33 U	0.33 U	0.33 U	
METHYL ETHYL KETONE (2-BUTANONE)	UG/L	50	1.6 U	1.6 U	1.6 U	
METHYL ISOBUTYL KETONE (4-METHYL-2- PENTANONE)	UG/L	-	1.6 U	1.6 U	1.6 U	

Concentration Exceeds Criteria

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-238, Pu-239/240, H-3).

 $^{\ \, \}text{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value. } \\$

Location Identifi Field Sample Ident		MW949 MW949	MW949 MW949	MW949 MW949		
Sample Type			Groundwater	Groundwater	Groundwater	
Sample Depth Interval (ft) :			-	-	-	
Date of Sample	e :		05/30/19	05/30/19	10/28/19	
Parameter	Units	Criteria ¹	Field Duplicate			
VOLATILE ORGANIC ANALYSES						
METHYLCYCLOHEXANE	UG/L	-	0.33 U	0.33 U	0.33 U	
METHYLENE CHLORIDE	UG/L	5	0.33 U	0.33 U	0.33 U	
O-XYLENE (1,2-DIMETHYLBENZENE)	UG/L	5	0.33 U	0.33 U	0.33 U	
STYRENE	UG/L	5	0.33 U	0.33 U	0.33 U	
TERT-BUTYL METHYL ETHER	UG/L	10	0.33 U	0.33 U	0.33 U	
TETRACHLOROETHYLENE(PCE)	UG/L	5	0.33 U	0.33 U	0.33 U	
TOLUENE	UG/L	5	0.33 U	0.33 U	0.33 U	
TRANS-1,2-DICHLOROETHENE	UG/L	5	0.33 U	0.33 U	0.33 U	
TRANS-1,3-DICHLOROPROPENE	UG/L	0.4	0.33 U	0.33 U	0.33 U	
TRICHLOROETHANE	UG/L	5	0.33 U	0.33 U	0.33 U	
TRICHLOROETHYLENE (TCE)	UG/L	5	0.33 U	0.33 U	0.33 U	
TRICHLOROFLUOROMETHANE	UG/L	5	0.33 U	0.33 U	0.33 U	
VINYL CHLORIDE	UG/L	2	0.33 U	0.33 U	0.33 U	
XYLENES, TOTAL	UG/L	-	1 U	1 U	1 U	


Concentration Exceeds Criteria

^{(1) -} TOGS 1.1.1 (June 1998) for chemicals (VOCs, metals), Ra-226 and Ra-228 (5 pCi/l), Thorium (sum total of 15 pCi/l). 10 NYCRR Part 5, Subpart 5-1 (NYSDOH) for Arsenic, Total Uranium (30 ug/L or 27 pCi/L) beta emitters total dose not to exceed 4 mrem/yr (Sr-90, Tc-99, Cs-137, Pu-238, Pu-239/240, H-3).

 $^{\ \, \}text{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value. } \\$

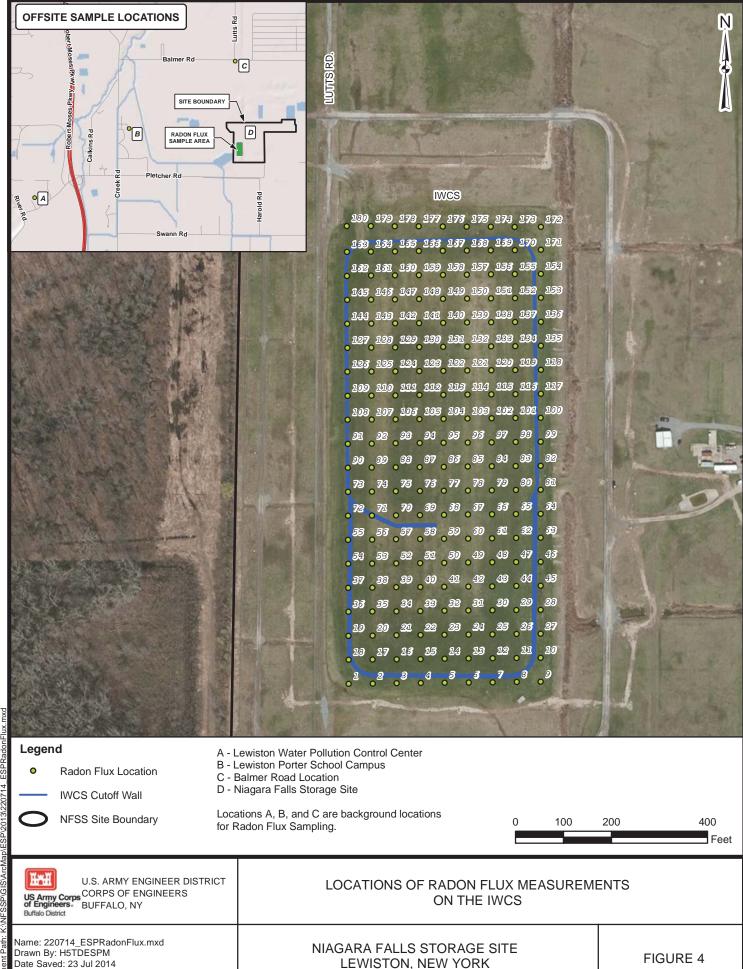
FIGURES

2019 Niagara Falls Storage Site Environmental Surveillance Technical Memorandum	

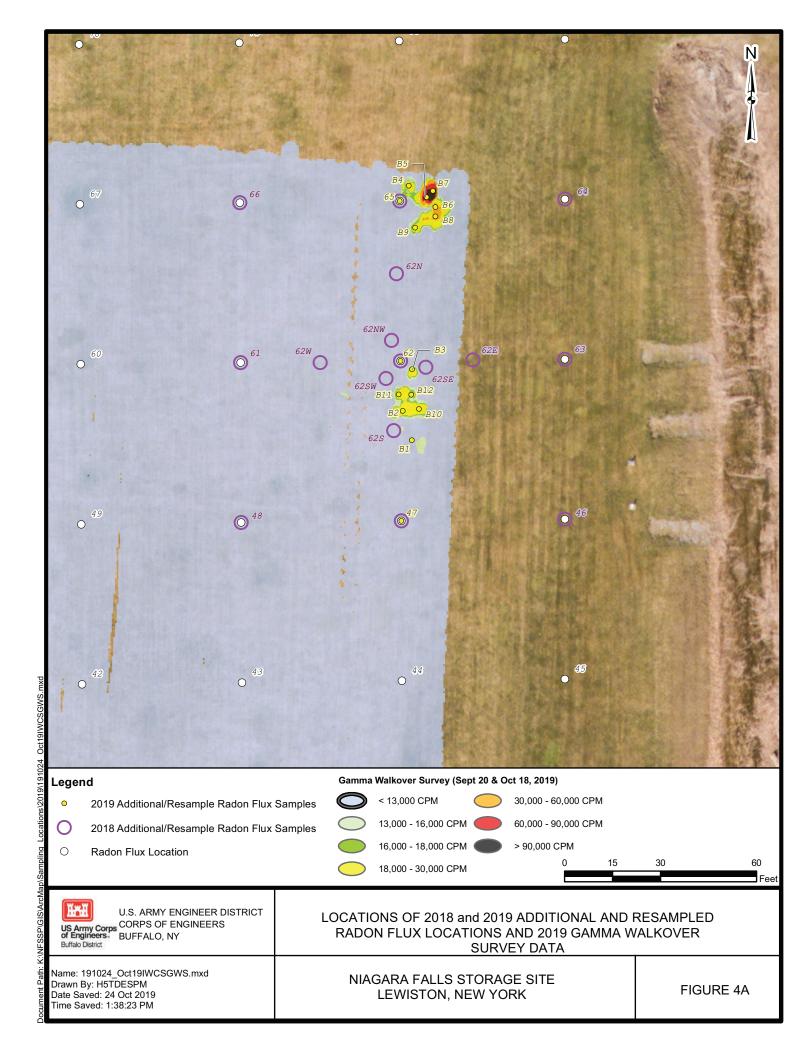
N	
A	
\$	

Fill			Upper
UCT		Upper Clay Till: Brown or reddish- brown clay with significant amounts of silt or sand and interspersed lenses of sand and gravel.	Water-Bearing Zone Elevation Range (Feet above MSL): 329 to 278
GLC		Glacio-Lacustrine Clay: Homogeneous gray clay with occasional laminations of red- brown silt and minor amounts of sand and gravel.	Aquitard
MST		Middle Silt Till: Gray to gray-brown silt with little sand and gravel.	
GLC		Glacio-Lacustrine Clay: Homogeneous gray clay with occasional laminations of red- brown silt and minor amounts of sand and gravel.	Elevation Range (Feet above MSL): 319 to 259
ASG	200 200 200 200 200 200 200 200 200 200	Alluvial Sand and Gravel: Stratified coarse sands, non- stratified coarse silt and sand or interlayered silt, sand and clay.	Lower Water-Bearing Zone
BRT		Basal Red Till: Reddish-brown silt and coarse to fine sand.	Elevation Range (Feet above MSL): 314 to 246
QFM		Queenston Formation: Reddish- brown fissile shale.	Aquitard Two

HAH


US Army Corps of Engineers.
Buffalo District U.S. ARMY ENGINEER DISTRICT

SCHEMATIC OF CONCEPTUALIZED **HYDROSTRATIGRAPHY**


Name: Figure03_Hydrostratigraphy.mxd Drawn By: H5TDESPM Date Saved: 07 Sep 2012 Time Saved: 3:41:57 PM

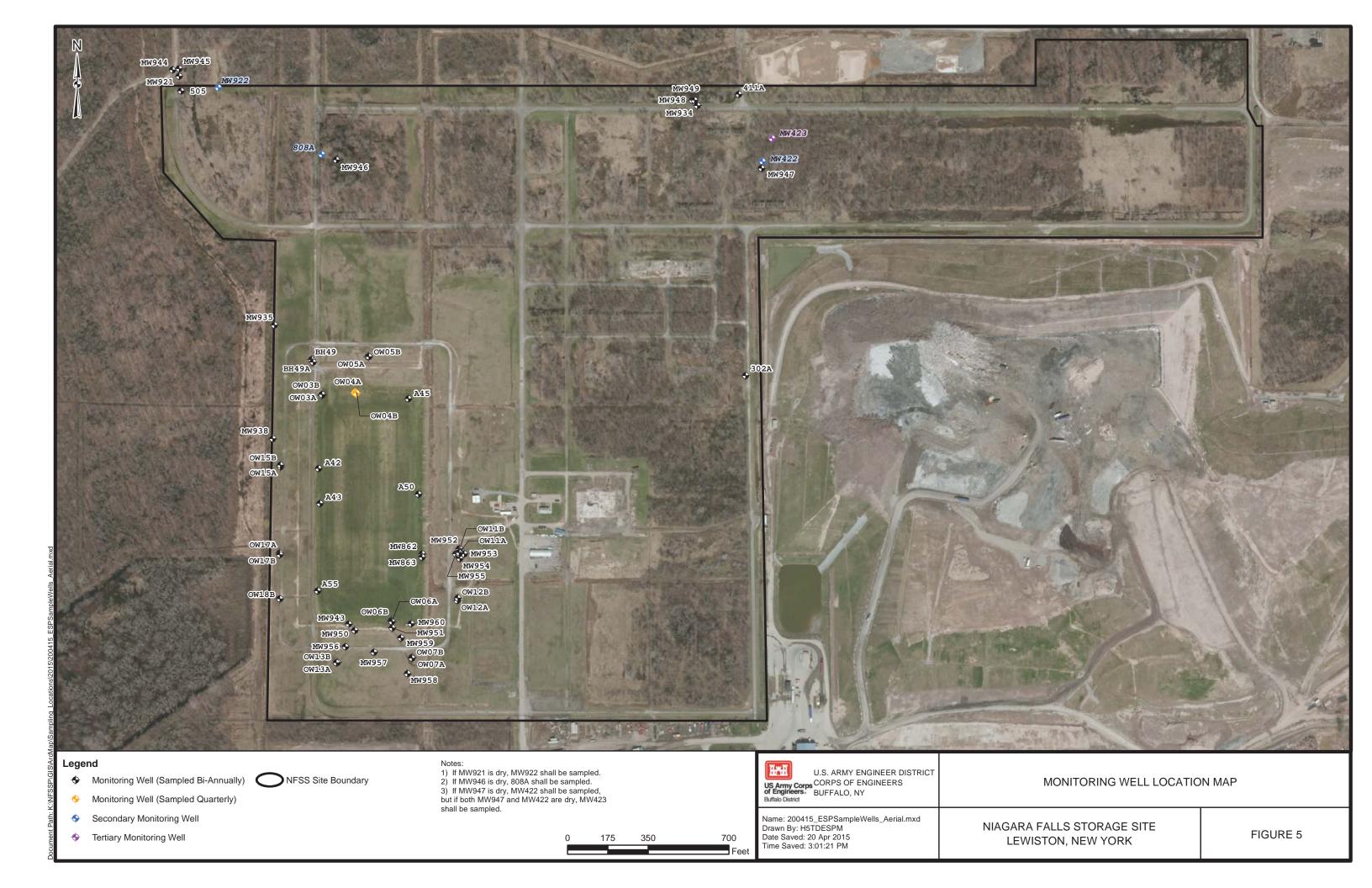

NIAGARA FALLS STORAGE SITE LEWISTON, NEW YORK

FIGURE 3

Time Saved: 9:52:36 AM

IWCS Cutoff Wall

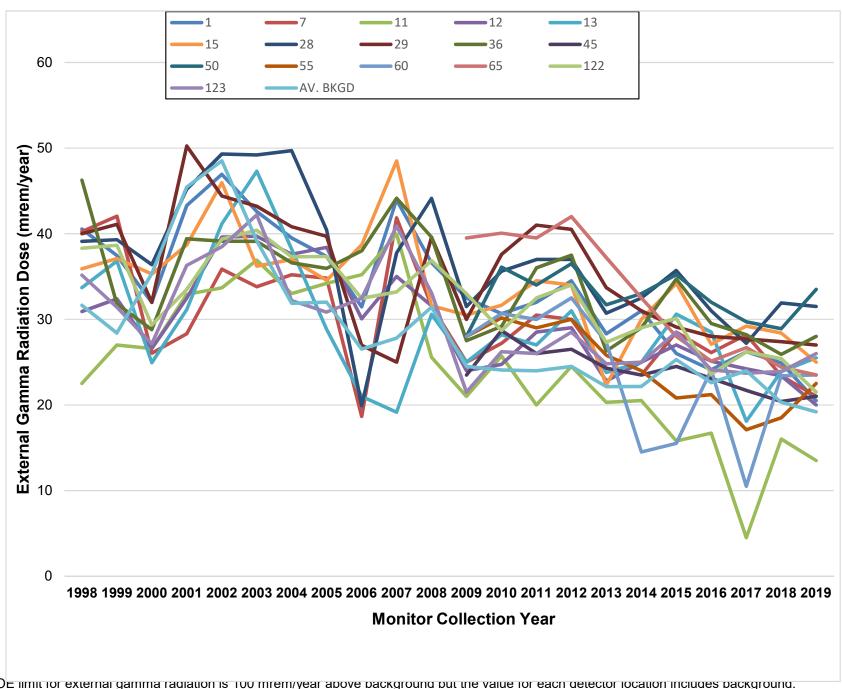
NFSS Site Boundary

D - Niagara Falls Storage Site

Locations A, B, and C are background locations for OSLDs and RadTrack Detectors.

U.S. ARMY ENGINEER DISTRICT CORPS OF ENGINEERS BUFFALO, NY

LOCATION OF RADTRACK DETECTORS AND OPTICALLY STIMULATED LUMINESCENCE DOSIMETERS (OSLDs)


Name: 220714_ESPTLD.mxd Drawn By: H5TDESPM Date Saved: 23 Jul 2014 Time Saved: 10:47:50 AM

NIAGARA FALLS STORAGE SITE LEWISTON, NEW YORK

FIGURE 6



FIGURE 8
EXTERNAL GAMMA RADIATION DOSE RATES AT NFSS PERIMETER

^{*}USDO immit for external gamma radiation is 100 mrem/year above background but the value for each detector location includes background. Select 2016 and 2017 OSL results may be biased low as a result of laboratory detection sensitivity.

FIGURE 9
EXTERNAL GAMMA RADIATION DOSE RATES AT IWCS PERIMETER

*The USDOE limit for external gamma radiation is 100 mrem/year above background but the value shown for each detector location includes background. Select 2016 and 2017 OSL results may be biased low as a result of laboratory detection sensitivity.

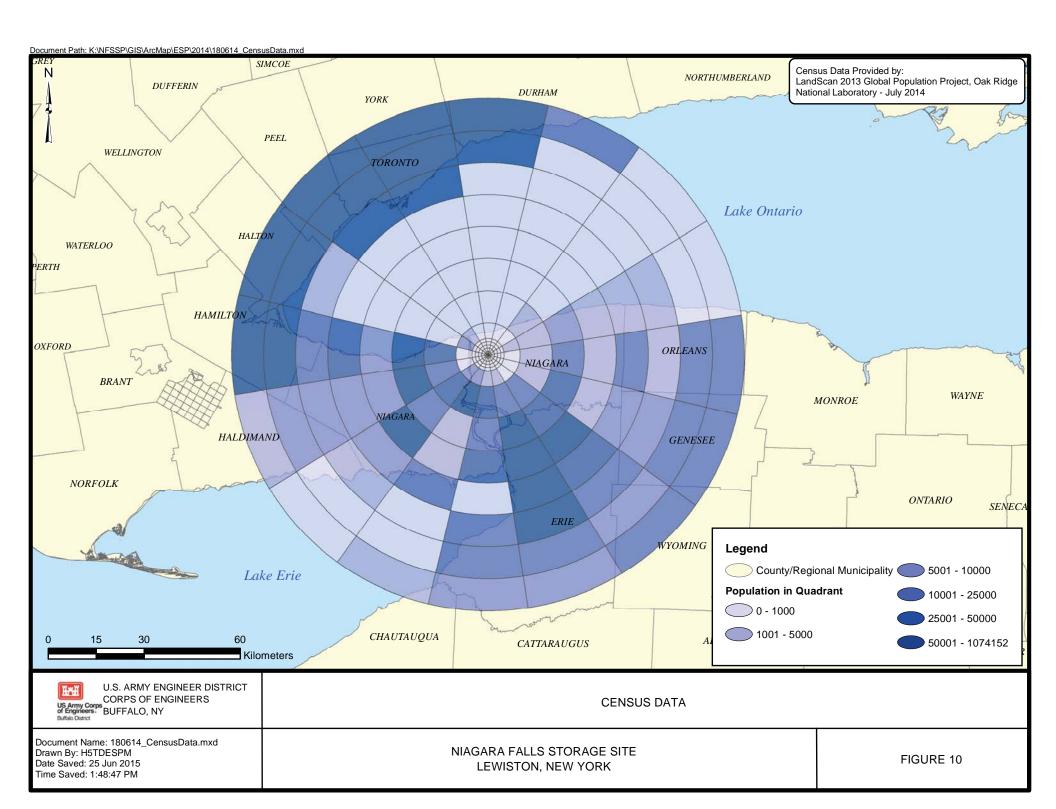


FIGURE 11
RADIUM-226 CONCENTRATIONS IN SEDIMENT
1997 - 2019

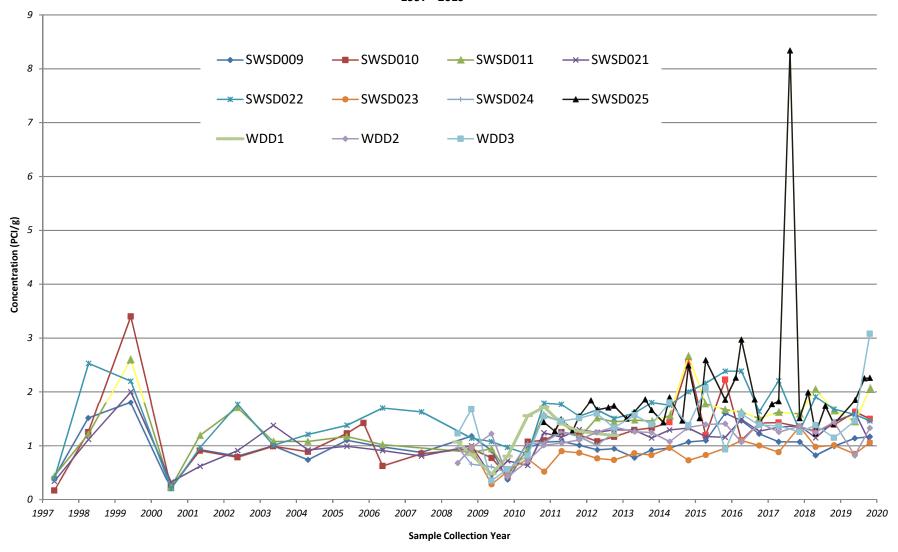
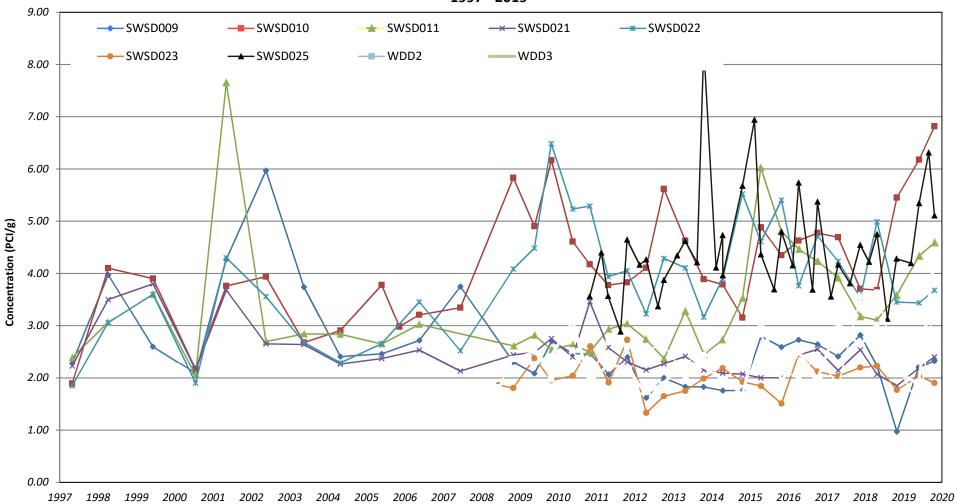
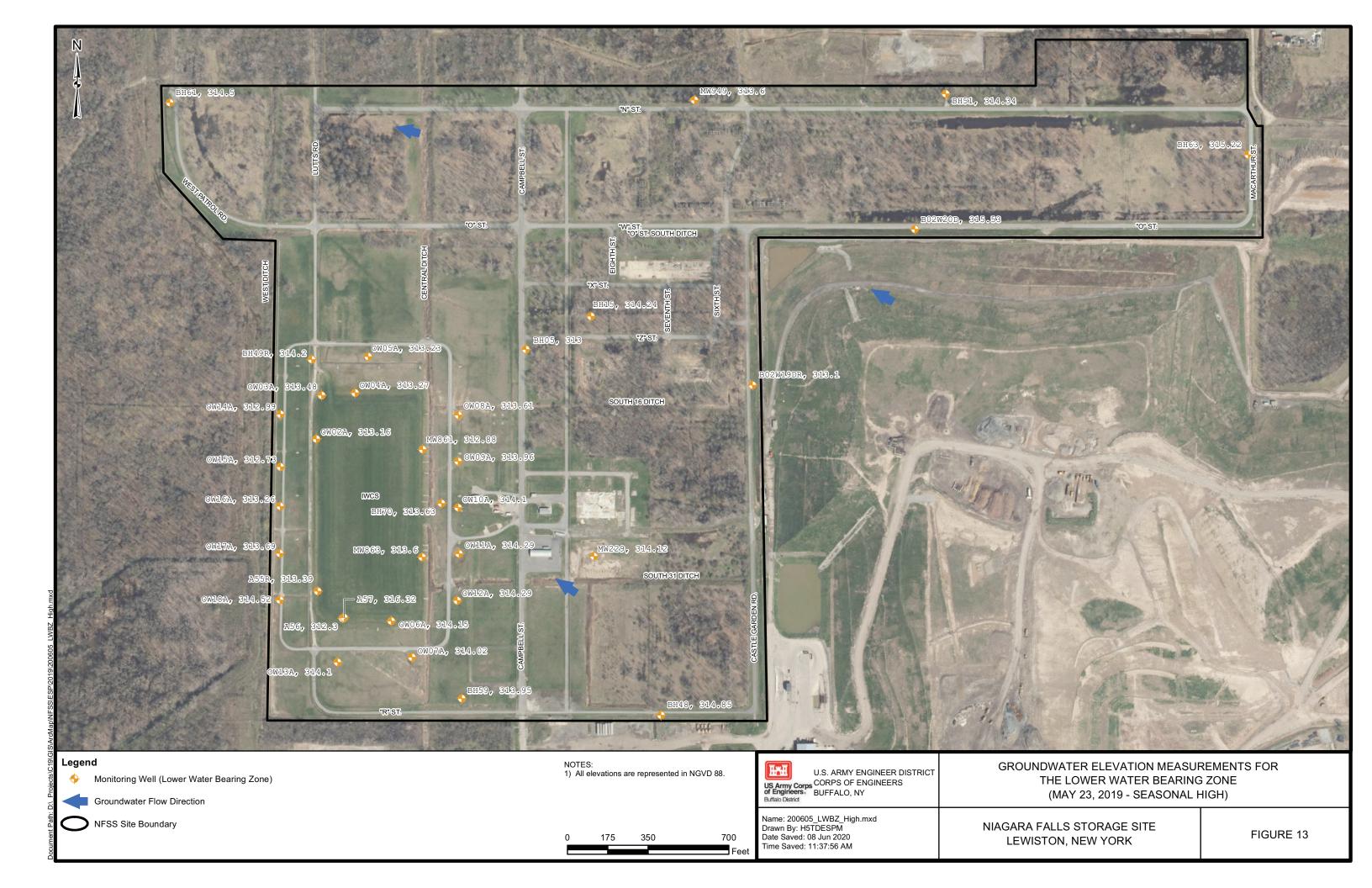
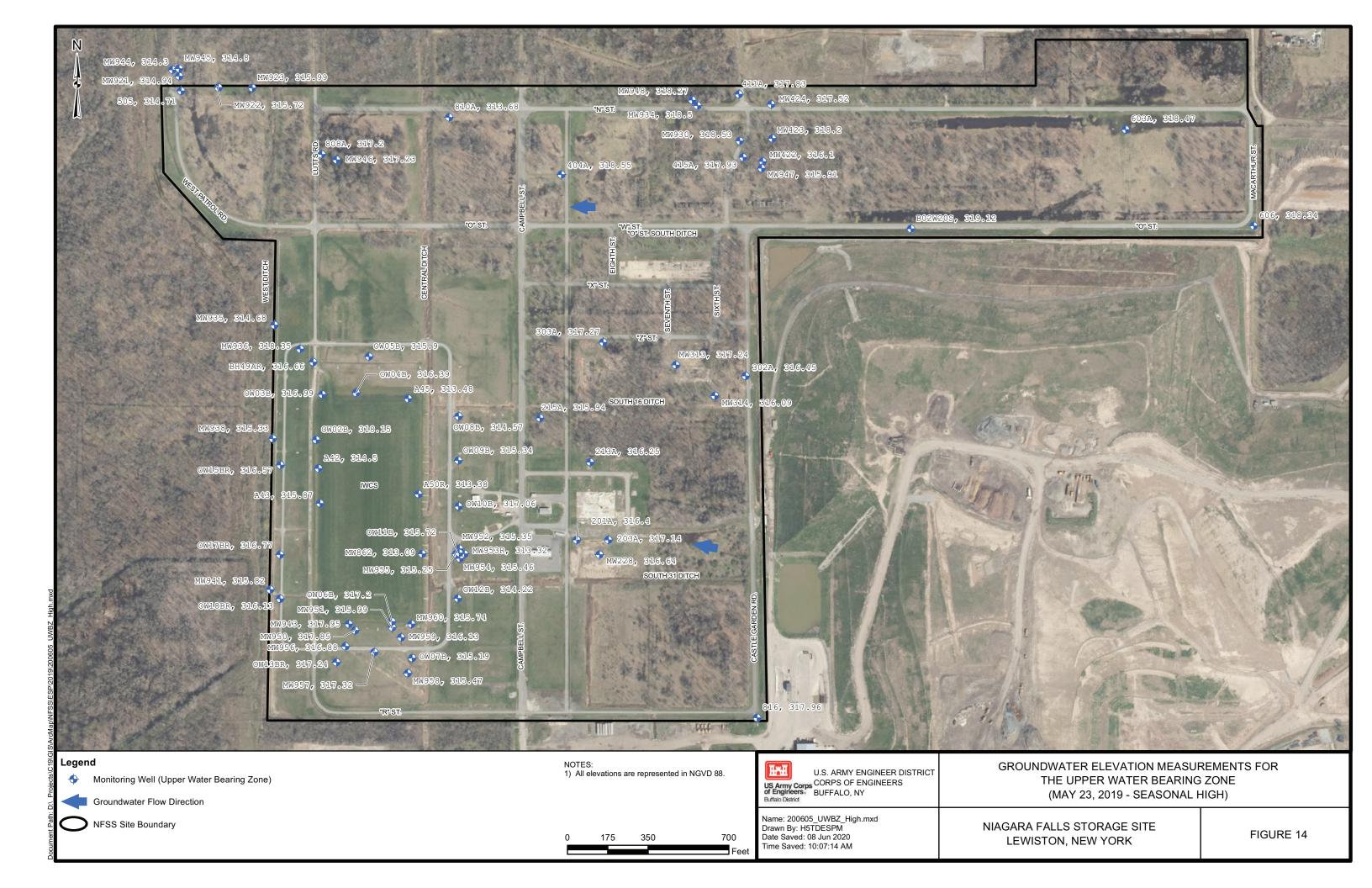
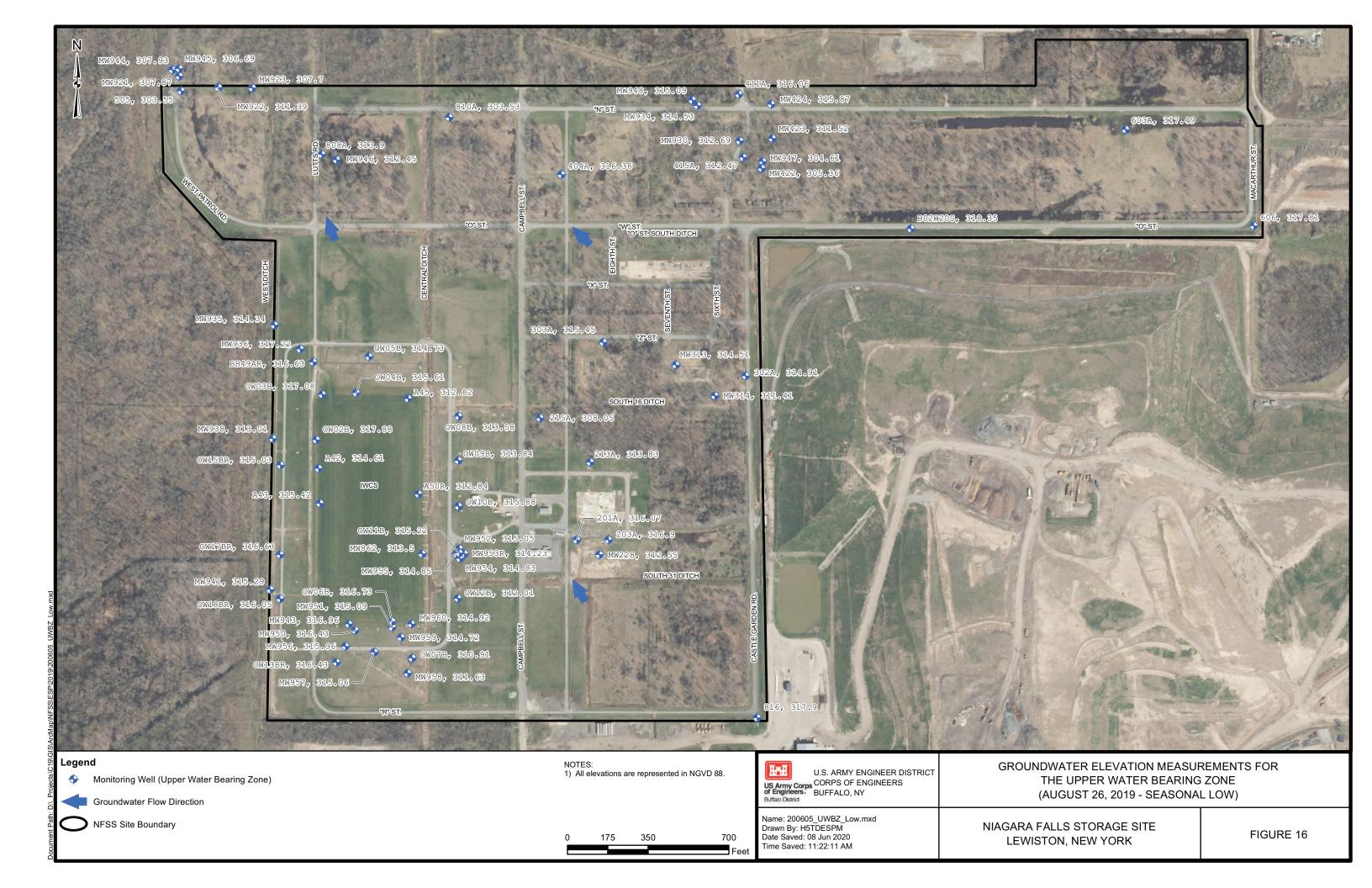






FIGURE 12 TOTAL URANIUM CONCENTRATIONS IN SEDIMENT 1997 - 2019



Sample Collection Year

ATTACHMENT A NON-RADIOLOGICAL ANALYTICAL DATA FOR SURFACE WATER AND SEDIMENT

Location Identifier		SWSD009	SWSD009	SWSD009	SWSD010	SWSD010
Field Sample Identifier		SWSD009	SWSD009	SWSD009-D	SWSD010	SWSD010
Sample Matrix		Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
Depth Interval (ft)		-	-	-	-	-
Date of Sample		05/23/19	10/22/19	10/22/19	05/29/19	10/23/19
Parameter	Units			Field Duplicate		
SEMI-VOLATILE ORGANIC ANALYSES						
ACENAPHTHENE	UG/L	0.24 U	0.23 U	0.24 U	0.23 U	0.23 U
ACENAPHTHYLENE	UG/L	0.24 U	0.23 U	0.24 U	0.23 U	0.23 U
ANTHRACENE	UG/L	0.24 U	0.23 U	0.24 U	0.23 U	0.23 U
BENZO(A)ANTHRACENE	UG/L	0.24 U	0.23 U	0.24 U	0.23 U	0.23 U
BENZO(A)PYRENE	UG/L	0.24 U	0.23 U	0.24 U	0.23 U	0.23 U
BENZO(B)FLUORANTHENE	UG/L	0.24 U	0.23 U	0.24 U	0.23 U	0.23 U
BENZO(G,H,I)PERYLENE	UG/L	0.24 U	0.23 U	0.24 U	0.23 U	0.23 U
BENZO(K)FLUORANTHENE	UG/L	0.24 U	0.23 U	0.24 U	0.23 U	0.23 U
CHRYSENE	UG/L	0.24 U	0.23 U	0.24 U	0.23 U	0.23 U
DIBENZ(A,H)ANTHRACENE	UG/L	0.24 U	0.23 U	0.24 U	0.23 U	0.23 U
FLUORANTHENE	UG/L	0.24 U	0.23 U	0.24 U	0.23 U	0.23 U
FLUORENE	UG/L	0.24 U	0.23 U	0.24 U	0.23 U	0.23 U
INDENO(1,2,3-C,D)PYRENE	UG/L	0.24 U	0.23 U	0.24 U	0.23 U	0.23 U
NAPHTHALENE	UG/L	0.24 U	0.23 U	0.24 U	0.23 U	0.23 U
PHENANTHRENE	UG/L	0.24 U	0.23 U	0.24 U	0.23 U	0.23 U
PYRENE	UG/L	0.24 U	0.23 U	0.24 U	0.23 U	0.23 U

The flags shown were assigned during chemistry validation.

 $[\]label{eq:concentration} \textbf{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value.}$

Location Identifier		SWSD011	SWSD011	SWSD021	SWSD021	SWSD022
Field Sample Identifier		SWSD011	SWSD011	SWSD021	SWSD021	SWSD022
Sample Matrix		Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
Depth Interval (ft)		-	-	-	=	-
Date of Sample		05/29/19	10/23/19	05/29/19	10/23/19	05/29/19
Parameter	Units					
SEMI-VOLATILE ORGANIC ANALYSES						
ACENAPHTHENE	UG/L	0.23 U				
ACENAPHTHYLENE	UG/L	0.23 U				
ANTHRACENE	UG/L	0.23 U				
BENZO(A)ANTHRACENE	UG/L	0.23 U				
BENZO(A)PYRENE	UG/L	0.23 U				
BENZO(B)FLUORANTHENE	UG/L	0.23 U				
BENZO(G,H,I)PERYLENE	UG/L	0.23 U				
BENZO(K)FLUORANTHENE	UG/L	0.23 U				
CHRYSENE	UG/L	0.23 U				
DIBENZ(A,H)ANTHRACENE	UG/L	0.23 U				
FLUORANTHENE	UG/L	0.23 U				
FLUORENE	UG/L	0.23 U				
INDENO(1,2,3-C,D)PYRENE	UG/L	0.23 U				
NAPHTHALENE	UG/L	0.23 U				
PHENANTHRENE	UG/L	0.23 U				
PYRENE	UG/L	0.23 U				

The flags shown were assigned during chemistry validation.

 $[\]label{eq:concentration} \textbf{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value.}$

Location Identifier		SWSD022	SWSD023	SWSD023	SWSD025	SWSD025
Field Sample Identifier		SWSD022	SWSD023	SWSD023	SWSD025	SWSD025
Sample Matrix		Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
Depth Interval (ft)		-	-	-	-	-
Date of Sample		10/23/19	05/23/19	10/22/19	03/12/19	05/29/19
Parameter	Units					
SEMI-VOLATILE ORGANIC ANALYSES						
ACENAPHTHENE	UG/L	0.23 U	0.23 U	0.23 U	0.012 U	0.23 U
ACENAPHTHYLENE	UG/L	0.23 U	0.23 U	0.23 U	0.012 U	0.23 U
ANTHRACENE	UG/L	0.23 U	0.23 U	0.23 U	0.005 U	0.23 U
BENZO(A)ANTHRACENE	UG/L	0.23 U	0.23 U	0.23 U	0.014 U	0.23 U
BENZO(A)PYRENE	UG/L	0.23 U	0.23 U	0.23 U	0.021 U	0.23 U
BENZO(B)FLUORANTHENE	UG/L	0.23 U	0.23 U	0.23 U	0.033 U	0.23 U
BENZO(G,H,I)PERYLENE	UG/L	0.23 U	0.23 U	0.23 U	0.024 U	0.23 U
BENZO(K)FLUORANTHENE	UG/L	0.23 U	0.23 U	0.23 U	0.029 U	0.23 U
CHRYSENE	UG/L	0.23 U	0.23 U	0.23 U	0.016 U	0.23 U
DIBENZ(A,H)ANTHRACENE	UG/L	0.23 U	0.23 U	0.23 U	0.021 U	0.23 U
FLUORANTHENE	UG/L	0.23 U	0.23 U	0.23 U	0.0093 U	0.23 U
FLUORENE	UG/L	0.23 U	0.23 U	0.23 U	0.013 U	0.23 U
INDENO(1,2,3-C,D)PYRENE	UG/L	0.23 U	0.23 U	0.23 U	0.026 U	0.23 U
NAPHTHALENE	UG/L	0.23 U	0.23 U	0.23 U	0.012 U	0.23 U
PHENANTHRENE	UG/L	0.23 U	0.23 U	0.23 U	0.009 U	0.23 U
PYRENE	UG/L	0.23 U	0.23 U	0.23 U	0.0093 U	0.23 U

The flags shown were assigned during chemistry validation.

 $[\]label{eq:concentration} \textbf{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value.}$

Location Identifier		SWSD025	SWSD025	WDD2	WDD2	WDD3
Field Sample Identifier		SWSD025	SWSD025	WDD2	WDD2	WDD3
Sample Matrix		Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
Depth Interval (ft)		-	-	-	-	-
Date of Sample		08/28/19	10/23/19	05/23/19	10/21/19	05/23/19
Parameter	Units					
SEMI-VOLATILE ORGANIC ANALYSES						
ACENAPHTHENE	UG/L	0.23 U	0.23 U	0.23 U	0.23 U	0.23 UJ
ACENAPHTHYLENE	UG/L	0.23 U	0.23 U	0.23 U	0.23 U	0.23 UJ
ANTHRACENE	UG/L	0.23 U	0.23 U	0.23 U	0.23 U	0.23 UJ
BENZO(A)ANTHRACENE	UG/L	0.23 U	0.23 U	0.23 U	0.23 U	0.23 UJ
BENZO(A)PYRENE	UG/L	0.23 U	0.23 U	0.23 U	0.23 U	0.23 UJ
BENZO(B)FLUORANTHENE	UG/L	0.23 U	0.23 U	0.23 U	0.23 U	0.23 UJ
BENZO(G,H,I)PERYLENE	UG/L	0.23 U	0.23 U	0.23 U	0.23 U	0.23 UJ
BENZO(K)FLUORANTHENE	UG/L	0.23 U	0.23 U	0.23 U	0.23 U	0.23 UJ
CHRYSENE	UG/L	0.23 U	0.23 U	0.23 U	0.23 U	0.23 UJ
DIBENZ(A,H)ANTHRACENE	UG/L	0.23 U	0.23 U	0.23 U	0.23 U	0.23 UJ
FLUORANTHENE	UG/L	0.23 U	0.23 U	0.23 U	0.23 U	0.23 UJ
FLUORENE	UG/L	0.23 U	0.23 U	0.23 U	0.23 U	0.23 UJ
INDENO(1,2,3-C,D)PYRENE	UG/L	0.23 U	0.23 U	0.23 U	0.23 U	0.23 UJ
NAPHTHALENE	UG/L	0.23 U	0.23 U	0.23 U	0.23 U	0.23 UJ
PHENANTHRENE	UG/L	0.23 U	0.23 U	0.23 U	0.23 U	0.23 UJ
PYRENE	UG/L	0.23 U	0.23 U	0.23 U	0.23 U	0.23 UJ

The flags shown were assigned during chemistry validation.

 $[\]label{eq:concentration} \textbf{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value.}$

Location Identifier	WDD3	WDD3	
Field Sample Identifier	WDD3-D	WDD3	
Sample Matrix	Surface Water	Surface Water	
Depth Interval (ft)	=	-	
Date of Sample	05/23/19	10/21/19	
Parameter	Field Duplicate		
SEMI-VOLATILE ORGANIC ANALYSES			
ACENAPHTHENE	UG/L	0.23 U	0.23 U
ACENAPHTHYLENE	UG/L	0.23 U	0.23 U
ANTHRACENE	UG/L	0.23 U	0.23 U
BENZO(A)ANTHRACENE	UG/L	0.23 U	0.23 U
BENZO(A)PYRENE	UG/L	0.23 U	0.23 U
BENZO(B)FLUORANTHENE	UG/L	0.23 U	0.23 U
BENZO(G,H,I)PERYLENE	UG/L	0.23 U	0.23 U
BENZO(K)FLUORANTHENE	UG/L	0.23 U	0.23 U
CHRYSENE	UG/L	0.23 U	0.23 U
DIBENZ(A,H)ANTHRACENE	UG/L	0.23 U	0.23 U
FLUORANTHENE	UG/L	0.23 U	0.23 U
FLUORENE	UG/L	0.23 U	0.23 U
INDENO(1,2,3-C,D)PYRENE	UG/L	0.23 U	0.23 U
NAPHTHALENE	UG/L	0.23 U	0.23 U
PHENANTHRENE	UG/L	0.23 U	0.23 U
PYRENE	UG/L	0.23 U	0.23 U

The flags shown were assigned during chemistry validation.

U - Not detected above the reported quantitation limit.; R - The data is rejected.; J - The reported concentration is an estimated value.

Location Identifier Field Sample Identifier Sample Matrix		SWSD009 swsD009 Surface Water	SWSD009 SWSD009 Surface Water	SWSD009 SWSD009-D Surface Water	SWSD010 SWSD010 Surface Water	SWSD010 swsD010 Surface Water
Depth Interval (ft) Date of Sample		05/23/19	10/22/19	10/22/19	05/29/19	10/23/19
Parameter	Units			Field Duplicate		
METALS						
ALUMINUM	UG/L	270	710 J	520 J	270	1,500
ANTIMONY	UG/L	4.2	3.5	3.1	1.6 J	3.2
ARSENIC	UG/L	2.7 J	2.9 J	2.4 J	1.7 J	1.7 J
BARIUM	UG/L	84 J	100	100	69 J	74
BERYLLIUM	UG/L	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
BORON	UG/L	410	510	510	400	350
CADMIUM	UG/L	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U
CALCIUM	UG/L	105,000	102,000	102,000	88,600	92,100
CHROMIUM, TOTAL	UG/L	2 J	3	2.6	8.5	7.3
COBALT	UG/L	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U
COPPER	UG/L	6.9	8.9	7.3	7.8	19
IRON	UG/L	750	1,300	1,100	650	2,900
LEAD	UG/L	1.6 J	4.9	3.8	1.2 J	24
LITHIUM	UG/L	48 J	44 J	43 J	36 U	36 U
MAGNESIUM	UG/L	44,500	32,200	32,300	31,600	23,500
MANGANESE	UG/L	180	200	200	190	120
MERCURY	UG/L	0.16 U	0.16 U	0.16 U	0.16 U	0.16 U
MOLYBDENUM	UG/L	9.8	11	8.3	5.6	7.9
NICKEL	UG/L	5.1 J	6.8	6.5	4.6 J	5.9
POTASSIUM	UG/L	11,800	16,100	16,400	11,600	8,900
SELENIUM	UG/L	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U

The flags shown were assigned during chemistry validation.

U - Not detected above the reported quantitation limit.; R - The data is rejected.; J - The reported concentration is an estimated value.

Location Identifier Field Sample Identifier		SWSD009 SWSD009	SWSD009 swsD009	SWSD009 SWSD009-D	SWSD010 swsD010	SWSD010 swsD010
Sample Matrix		Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
Depth Interval (ft) Date of Sample		05/23/19	10/22/19	10/22/19	05/29/19	10/23/19
Parameter	Units			Field Duplicate		
METALS						
SILVER	UG/L	0.74 U	0.74 U	0.74 U	0.74 U	0.74 U
SODIUM	UG/L	185,000	118,000	120,000	81,900	51,700
THALLIUM	UG/L	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
VANADIUM	UG/L	1.9 J	2.5	2.2	1.8 J	4.6
ZINC	UG/L	19 J	33	28	21 J	91
METALS (FILTERED)						
ALUMINUM	UG/L	Not Analyzed	620	Not Analyzed	Not Analyzed	Not Analyzed
ANTIMONY	UG/L	Not Analyzed	7.5	Not Analyzed	Not Analyzed	Not Analyzed
ARSENIC	UG/L	Not Analyzed	2.6 J	Not Analyzed	Not Analyzed	Not Analyzed
BARIUM	UG/L	Not Analyzed	77	Not Analyzed	Not Analyzed	Not Analyzed
BERYLLIUM	UG/L	Not Analyzed	0.37 U	Not Analyzed	Not Analyzed	Not Analyzed
BORON	UG/L	Not Analyzed	360	Not Analyzed	Not Analyzed	Not Analyzed
CADMIUM	UG/L	Not Analyzed	0.37 U	Not Analyzed	Not Analyzed	Not Analyzed
CALCIUM	UG/L	Not Analyzed	99,900	Not Analyzed	Not Analyzed	Not Analyzed
CHROMIUM, TOTAL	UG/L	Not Analyzed	2.7	Not Analyzed	Not Analyzed	Not Analyzed
COBALT	UG/L	Not Analyzed	1.9 U	Not Analyzed	Not Analyzed	Not Analyzed
COPPER	UG/L	Not Analyzed	21	Not Analyzed	Not Analyzed	Not Analyzed
IRON	UG/L	Not Analyzed	1,100	Not Analyzed	Not Analyzed	Not Analyzed
LEAD	UG/L	Not Analyzed	10	Not Analyzed	Not Analyzed	Not Analyzed
LITHIUM	UG/L	Not Analyzed	33 U	Not Analyzed	Not Analyzed	Not Analyzed
MAGNESIUM	UG/L	Not Analyzed	27,800	Not Analyzed	Not Analyzed	Not Analyzed

The flags shown were assigned during chemistry validation.

U - Not detected above the reported quantitation limit.; R - The data is rejected.; J - The reported concentration is an estimated value.

Location Identifier		SWSD009	SWSD009	SWSD009	SWSD010	SWSD010
Field Sample Identifier		SWSD009	SWSD009	SWSD009-D	SWSD010	SWSD010
Sample Matrix		Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
Depth Interval (ft)		-	-	-	=	=
Date of Sample		05/23/19	10/22/19	10/22/19	05/29/19	10/23/19
Parameter	Units			Field Duplicate		
METALS (FILTERED)						
MANGANESE	UG/L	Not Analyzed	130	Not Analyzed	Not Analyzed	Not Analyzed
MERCURY	UG/L	Not Analyzed	0.03 U	Not Analyzed	Not Analyzed	Not Analyzed
MOLYBDENUM	UG/L	Not Analyzed	9.5	Not Analyzed	Not Analyzed	Not Analyzed
NICKEL	UG/L	Not Analyzed	6.7	Not Analyzed	Not Analyzed	Not Analyzed
POTASSIUM	UG/L	Not Analyzed	10,300	Not Analyzed	Not Analyzed	Not Analyzed
SELENIUM	UG/L	Not Analyzed	1.9 U	Not Analyzed	Not Analyzed	Not Analyzed
SILVER	UG/L	Not Analyzed	0.74 U	Not Analyzed	Not Analyzed	Not Analyzed
SODIUM	UG/L	Not Analyzed	108,000	Not Analyzed	Not Analyzed	Not Analyzed
THALLIUM	UG/L	Not Analyzed	0.37 U	Not Analyzed	Not Analyzed	Not Analyzed
VANADIUM	UG/L	Not Analyzed	3	Not Analyzed	Not Analyzed	Not Analyzed
ZINC	UG/L	Not Analyzed	66	Not Analyzed	Not Analyzed	Not Analyzed

The flags shown were assigned during chemistry validation.

U - Not detected above the reported quantitation limit.; R - The data is rejected.; J - The reported concentration is an estimated value.

Location Identifier Field Sample Identifier Sample Matrix		SWSD011 SWSD011	SWSD011 swsD011	SWSD021 SWSD021	SWSD021 SWSD021	SWSD022 SWSD022
		Surface Water				
Depth Interval (ft) Date of Sample		05/29/19	10/23/19	05/29/19	10/23/19	05/29/19
Parameter	Units					
METALS						
ALUMINUM	UG/L	160	770	950	2,100	280
ANTIMONY	UG/L	0.74 U	1.6 J	0.74 U	0.74 U	1.1 J
ARSENIC	UG/L	1.2 J	1.2 J	1.7 J	1.4 J	1.3 J
BARIUM	UG/L	62 J	71	70 J	56	63 J
BERYLLIUM	UG/L	0.3 U				
BORON	UG/L	270	430	87 J	49 J	360
CADMIUM	UG/L	0.37 U				
CALCIUM	UG/L	97,800	91,500	92,100	51,100	92,600
CHROMIUM, TOTAL	UG/L	4.3	4.7	430	3.6	3.7
COBALT	UG/L	1.9 U				
COPPER	UG/L	4.4 J	6.7	3.7 J	8.8	6.1
IRON	UG/L	580	1,200	1,000	3,000	760
LEAD	UG/L	0.74 U	3	0.74 U	1.5 J	0.74 U
LITHIUM	UG/L	36 U	36 U	65 U	36 U	36 U
MAGNESIUM	UG/L	30,500	27,200	30,400	18,500	32,000
MANGANESE	UG/L	170	96	68	42	180
MERCURY	UG/L	0.16 U	0.16 U	Not Analyzed	0.16 U	0.16 U
MOLYBDENUM	UG/L	3.3	4.7	6.5	2.9	4.6
NICKEL	UG/L	2.6 J	3.8 J	2.6 J	3.7 J	3.5 J
POTASSIUM	UG/L	8,200	8,100	3,200	6,100	11,100
SELENIUM	UG/L	1.9 U				

The flags shown were assigned during chemistry validation.

U - Not detected above the reported quantitation limit.; R - The data is rejected.; J - The reported concentration is an estimated value.

Location Identifier Field Sample Identifier		SWSD011 SWSD011	SWSD011 SWSD011	SWSD021 SWSD021	SWSD021 SWSD021	SWSD022 SWSD022
Sample Matrix		Surface Water				
Depth Interval (ft)		-	-	-	-	-
Date of Sample	T	05/29/19	10/23/19	05/29/19	10/23/19	05/29/19
Parameter	Units					
METALS						
SILVER	UG/L	0.74 U				
SODIUM	UG/L	38,400	47,700	25,800	7,500	67,800
THALLIUM	UG/L	0.3 U				
VANADIUM	UG/L	1.2 J	2.2	6.8	3.9	1.4 J
ZINC	UG/L	11 J	20	12 J	16	11 J
METALS (FILTERED)						
ALUMINUM	UG/L	Not Analyzed	Not Analyzed	580	Not Analyzed	Not Analyzed
ANTIMONY	UG/L	Not Analyzed	Not Analyzed	0.74 U	Not Analyzed	Not Analyzed
ARSENIC	UG/L	Not Analyzed	Not Analyzed	1.7 J	Not Analyzed	Not Analyzed
BARIUM	UG/L	Not Analyzed	Not Analyzed	61	Not Analyzed	Not Analyzed
BERYLLIUM	UG/L	Not Analyzed	Not Analyzed	0.37 U	Not Analyzed	Not Analyzed
BORON	UG/L	Not Analyzed	Not Analyzed	84 J	Not Analyzed	Not Analyzed
CADMIUM	UG/L	Not Analyzed	Not Analyzed	0.37 U	Not Analyzed	Not Analyzed
CALCIUM	UG/L	Not Analyzed	Not Analyzed	86,600	Not Analyzed	Not Analyzed
CHROMIUM, TOTAL	UG/L	Not Analyzed	Not Analyzed	400 J	Not Analyzed	Not Analyzed
COBALT	UG/L	Not Analyzed	Not Analyzed	1.9 U	Not Analyzed	Not Analyzed
COPPER	UG/L	Not Analyzed	Not Analyzed	3.4 J	Not Analyzed	Not Analyzed
IRON	UG/L	Not Analyzed	Not Analyzed	580	Not Analyzed	Not Analyzed
LEAD	UG/L	Not Analyzed	Not Analyzed	0.74 U	Not Analyzed	Not Analyzed
LITHIUM	UG/L	Not Analyzed	Not Analyzed	33 U	Not Analyzed	Not Analyzed
MAGNESIUM	UG/L	Not Analyzed	Not Analyzed	26,400	Not Analyzed	Not Analyzed

The flags shown were assigned during chemistry validation.

U - Not detected above the reported quantitation limit.; R - The data is rejected.; J - The reported concentration is an estimated value.

Location Identifier		SWSD011	SWSD011	SWSD021	SWSD021	SWSD022
Field Sample Identifier		SWSD011	SWSD011	SWSD021	SWSD021	SWSD022
Sample Matrix		Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
Depth Interval (ft)		-	-	-	-	-
Date of Sample		05/29/19	10/23/19	05/29/19	10/23/19	05/29/19
Parameter	Units					
METALS (FILTERED)						
MANGANESE	UG/L	Not Analyzed	Not Analyzed	55	Not Analyzed	Not Analyzed
MERCURY	UG/L	Not Analyzed	Not Analyzed	0.03 U	Not Analyzed	Not Analyzed
MOLYBDENUM	UG/L	Not Analyzed	Not Analyzed	6.1	Not Analyzed	Not Analyzed
NICKEL	UG/L	Not Analyzed	Not Analyzed	2 J	Not Analyzed	Not Analyzed
POTASSIUM	UG/L	Not Analyzed	Not Analyzed	3,100	Not Analyzed	Not Analyzed
SELENIUM	UG/L	Not Analyzed	Not Analyzed	1.9 U	Not Analyzed	Not Analyzed
SILVER	UG/L	Not Analyzed	Not Analyzed	0.74 U	Not Analyzed	Not Analyzed
SODIUM	UG/L	Not Analyzed	Not Analyzed	24,200	Not Analyzed	Not Analyzed
THALLIUM	UG/L	Not Analyzed	Not Analyzed	0.37 U	Not Analyzed	Not Analyzed
VANADIUM	UG/L	Not Analyzed	Not Analyzed	1.2 J	Not Analyzed	Not Analyzed
ZINC	UG/L	Not Analyzed	Not Analyzed	6.6	Not Analyzed	Not Analyzed

The flags shown were assigned during chemistry validation.

U - Not detected above the reported quantitation limit.; R - The data is rejected.; J - The reported concentration is an estimated value.

Location Identifier Field Sample Identifier Sample Matrix		SWSD022 SWSD022 Surface Water	SWSD023 SWSD023 Surface Water	SWSD023 SWSD023 Surface Water	SWSD025 SWSD025 Surface Water	SWSD025 SWSD025 Surface Water
Depth Interval (ft)		- 10/23/19	- 05/23/19	- 10/22/19	03/12/19	- 05/29/19
Date of Sample Parameter	Units	10/25/19	05/25/19	10/22/19	05/12/19	05/25/15
METALS						
ALUMINUM	UG/L	770	130	90	310	220
ANTIMONY	UG/L	2.1 J	0.76 J	1.4 J	17	0.89 J
ARSENIC	UG/L	1.5 J	1.6 J	1.5 J	1 U	1 U
BARIUM	UG/L	73	63 J	58	54	65 J
BERYLLIUM	UG/L	0.3 U				
BORON	UG/L	830	170	140	240	330
CADMIUM	UG/L	0.37 U				
CALCIUM	UG/L	85,400	140,000	110,000	70,400	100,000
CHROMIUM, TOTAL	UG/L	9.3	1.4 J	0.74 U	3.7	3.2
COBALT	UG/L	1.9 U				
COPPER	UG/L	6.9	12	3.9 J	5.1 J	5.5 J
IRON	UG/L	1,400	1,400	1,100	430	730
LEAD	UG/L	3.7	1.6 J	2.1 J	0.93 J	0.74 U
LITHIUM	UG/L	36 U	45 J	36 U	36 U	36 U
MAGNESIUM	UG/L	24,100	46,400	29,100	23,300	36,600
MANGANESE	UG/L	98	410	350	62	190
MERCURY	UG/L	0.16 U				
MOLYBDENUM	UG/L	5.3	8.1	6.8	8.8	4.2
NICKEL	UG/L	4.5 J	4.6 J	3.5 J	2.7 J	3.4 J
POTASSIUM	UG/L	9,800	13,000	4,900	5,300	10,600
SELENIUM	UG/L	1.9 U				

The flags shown were assigned during chemistry validation.

U - Not detected above the reported quantitation limit.; R - The data is rejected.; J - The reported concentration is an estimated value.

Location Identifier Field Sample Identifier		SWSD022 SWSD022	SWSD023 SWSD023	SWSD023 SWSD023	SWSD025 SWSD025	SWSD025 SWSD025
Sample Matrix		Surface Water				
Depth Interval (ft)		-	-	-	-	-
Date of Sample		10/23/19	05/23/19	10/22/19	03/12/19	05/29/19
Parameter	Units					
METALS						
SILVER	UG/L	0.74 U				
SODIUM	UG/L	61,100	122,000	66,400	91,000	65,300
THALLIUM	UG/L	0.3 U	0.3 U	0.3 U	2.3	0.3 U
VANADIUM	UG/L	2.1 J	1.4 J	0.74 U	1.4 J	1.2 J
ZINC	UG/L	20	28 J	31	11	13 J
METALS (FILTERED)						
ALUMINUM	UG/L	Not Analyzed				
ANTIMONY	UG/L	Not Analyzed				
ARSENIC	UG/L	Not Analyzed				
BARIUM	UG/L	Not Analyzed				
BERYLLIUM	UG/L	Not Analyzed				
BORON	UG/L	Not Analyzed				
CADMIUM	UG/L	Not Analyzed				
CALCIUM	UG/L	Not Analyzed				
CHROMIUM, TOTAL	UG/L	Not Analyzed				
COBALT	UG/L	Not Analyzed				
COPPER	UG/L	Not Analyzed				
IRON	UG/L	Not Analyzed				
LEAD	UG/L	Not Analyzed				
LITHIUM	UG/L	Not Analyzed				
MAGNESIUM	UG/L	Not Analyzed				

The flags shown were assigned during chemistry validation.

U - Not detected above the reported quantitation limit.; R - The data is rejected.; J - The reported concentration is an estimated value.

Location Identifier		SWSD022	SWSD023	SWSD023	SWSD025	SWSD025
Field Sample Identifier		SWSD022	SWSD023	SWSD023	SWSD025	SWSD025
Sample Matrix		Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
Depth Interval (ft)		-	-	-	-	-
Date of Sample		10/23/19	05/23/19	10/22/19	03/12/19	05/29/19
Parameter	Units					
METALS (FILTERED)						
MANGANESE	UG/L	Not Analyzed				
MERCURY	UG/L	Not Analyzed				
MOLYBDENUM	UG/L	Not Analyzed				
NICKEL	UG/L	Not Analyzed				
POTASSIUM	UG/L	Not Analyzed				
SELENIUM	UG/L	Not Analyzed				
SILVER	UG/L	Not Analyzed				
SODIUM	UG/L	Not Analyzed				
THALLIUM	UG/L	Not Analyzed				
VANADIUM	UG/L	Not Analyzed				
ZINC	UG/L	Not Analyzed				

The flags shown were assigned during chemistry validation.

U - Not detected above the reported quantitation limit.; R - The data is rejected.; J - The reported concentration is an estimated value.

Location Identifier Field Sample Identifier Sample Matrix Depth Interval (ft)		SWSD025 SWSD025 Surface Water	SWSD025 swsD025 Surface Water	WDD2 WDD2 Surface Water	WDD2 WDD2 Surface Water	WDD3 WDD3 Surface Water
		-	-	-	-	-
Date of Sample Parameter	Units	08/28/19	10/23/19	05/23/19	10/21/19	05/23/19
METALS						
ALUMINUM	UG/L	180	780	220	120	400
ANTIMONY	UG/L	0.86 J	1.7 J	0.74 U	0.74 U	0.74 U
ARSENIC	UG/L	2.3 J	1.3 J	1.8 J	1 U	2 J
BARIUM	UG/L	80	71	41 J	43	43 J
BERYLLIUM	UG/L	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
BORON	UG/L	610	530	99 J	130	100 J
CADMIUM	UG/L	0.37 U	0.37 U	0.37 U	0.37 U	0.37 U
CALCIUM	UG/L	121,000	85,400	73,700	76,500	78,300
CHROMIUM, TOTAL	UG/L	1.9 J	6.9	1.5 J	0.74 U	1.7 J
COBALT	UG/L	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U
COPPER	UG/L	1.9 J	6.6	1.9 U	1.9 U	2.1 J
IRON	UG/L	840	1,400	780	470	1,000
LEAD	UG/L	0.74 U	3	0.74 U	0.74 U	0.74 U
LITHIUM	UG/L	36 U	36 U	36 U	36 U	36 U
MAGNESIUM	UG/L	37,900	24,400	28,900	30,400	29,600
MANGANESE	UG/L	1,500	99	470	280	340
MERCURY	UG/L	0.16 UJ	0.16 U	0.16 U	0.16 U	0.16 U
MOLYBDENUM	UG/L	3.9	4.6	3	1.5 J	3.2
NICKEL	UG/L	3.4 J	3.8 J	2.9 J	1.9 J	3.2 J
POTASSIUM	UG/L	5,900	8,800	6,900	6,300	7,300
SELENIUM	UG/L	1.9 U	1.9 U	1.9 U	1.9 U	1.9 U

The flags shown were assigned during chemistry validation.

U - Not detected above the reported quantitation limit.; R - The data is rejected.; J - The reported concentration is an estimated value.

Location Identifier		SWSD025	SWSD025	WDD2	WDD2	WDD3
Field Sample Identifier		SWSD025	SWSD025	WDD2	WDD2	WDD3
Sample Matrix		Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
Depth Interval (ft)		-	-	-	-	-
Date of Sample		08/28/19	10/23/19	05/23/19	10/21/19	05/23/19
Parameter	Units					
METALS						
SILVER	UG/L	0.74 U				
SODIUM	UG/L	75,900	51,700	51,500	56,400	48,900
THALLIUM	UG/L	0.3 U				
VANADIUM	UG/L	1 J	2.3	1.3 J	0.74 U	1.9 J
ZINC	UG/L	6.6	24	12 J	4.5 J	13 J
METALS (FILTERED)						
ALUMINUM	UG/L	Not Analyzed				
ANTIMONY	UG/L	Not Analyzed				
ARSENIC	UG/L	Not Analyzed				
BARIUM	UG/L	Not Analyzed				
BERYLLIUM	UG/L	Not Analyzed				
BORON	UG/L	Not Analyzed				
CADMIUM	UG/L	Not Analyzed				
CALCIUM	UG/L	Not Analyzed				
CHROMIUM, TOTAL	UG/L	Not Analyzed				
COBALT	UG/L	Not Analyzed				
COPPER	UG/L	Not Analyzed				
IRON	UG/L	Not Analyzed				
LEAD	UG/L	Not Analyzed				
LITHIUM	UG/L	Not Analyzed				
MAGNESIUM	UG/L	Not Analyzed				

The flags shown were assigned during chemistry validation.

U - Not detected above the reported quantitation limit.; R - The data is rejected.; J - The reported concentration is an estimated value.

Location Identifier		SWSD025	SWSD025	WDD2	WDD2	WDD3
Field Sample Identifier		SWSD025	SWSD025	WDD2	WDD2	WDD3
Sample Matrix		Surface Water	Surface Water	Surface Water	Surface Water	Surface Water
Depth Interval (ft)		-	-	-	=	-
Date of Sample		08/28/19	10/23/19	05/23/19	10/21/19	05/23/19
Parameter	Units					
METALS (FILTERED)						
MANGANESE	UG/L	Not Analyzed				
MERCURY	UG/L	Not Analyzed				
MOLYBDENUM	UG/L	Not Analyzed				
NICKEL	UG/L	Not Analyzed				
POTASSIUM	UG/L	Not Analyzed				
SELENIUM	UG/L	Not Analyzed				
SILVER	UG/L	Not Analyzed				
SODIUM	UG/L	Not Analyzed				
THALLIUM	UG/L	Not Analyzed				
VANADIUM	UG/L	Not Analyzed				
ZINC	UG/L	Not Analyzed				

The flags shown were assigned during chemistry validation.

U - Not detected above the reported quantitation limit.; R - The data is rejected.; J - The reported concentration is an estimated value.

Location Identifier Field Sample Identifier Sample Matrix Depth Interval (ft) Date of Sample	WDD3-D Surface Water - 05/23/19 Field Duplicate	WDD3 WDD3 Surface Water - 10/21/19	
Parameter	Units		
METALS			
ALUMINUM	UG/L	410	150
ANTIMONY	UG/L	0.74 U	0.74 U
ARSENIC	UG/L	2.1 J	1 U
BARIUM	UG/L	47	39
BERYLLIUM	UG/L	0.3 U	0.3 U
BORON	UG/L	98 J	130
CADMIUM	UG/L	0.37 U	0.37 U
CALCIUM	UG/L	81,900	77,000
CHROMIUM, TOTAL	UG/L	1.8 J	0.74 U
COBALT	UG/L	1.9 U	1.9 U
COPPER	UG/L	2.2 J	1.9 U
IRON	UG/L	890	470
LEAD	UG/L	0.74 U	0.74 U
LITHIUM	UG/L	36 U	36 U
MAGNESIUM	UG/L	30,000	30,400
MANGANESE	UG/L	360	140
MERCURY	UG/L	0.16 U	0.16 U
MOLYBDENUM	UG/L	2.7	1.5 J
NICKEL	UG/L	3.4 J	1.9 U
POTASSIUM	UG/L	7,100	6,500
SELENIUM	UG/L	1.9 U	1.9 U

The flags shown were assigned during chemistry validation.

U - Not detected above the reported quantitation limit.; R - The data is rejected.; J - The reported concentration is an estimated value.

Location Identifier Field Sample Identifier	WDD3 WDD3-D	WDD3	
Sample Matrix	Surface Water	Surface Water	
Depth Interval (ft)		-	-
Date of Sample		05/23/19 Field Duplicate	10/21/19
Parameter	Units	r lold Bapilodic	
METALS			
SILVER	UG/L	0.74 U	0.74 U
SODIUM	UG/L	48,200	56,300
THALLIUM	UG/L	0.3 U	0.3 U
VANADIUM	UG/L	1.8 J	0.74 U
ZINC	UG/L	10 J	4.8 J
METALS (FILTERED)			
ALUMINUM	UG/L	Not Analyzed	Not Analyzed
ANTIMONY	UG/L	Not Analyzed	Not Analyzed
ARSENIC	UG/L	Not Analyzed	Not Analyzed
BARIUM	UG/L	Not Analyzed	Not Analyzed
BERYLLIUM	UG/L	Not Analyzed	Not Analyzed
BORON	UG/L	Not Analyzed	Not Analyzed
CADMIUM	UG/L	Not Analyzed	Not Analyzed
CALCIUM	UG/L	Not Analyzed	Not Analyzed
CHROMIUM, TOTAL	UG/L	Not Analyzed	Not Analyzed
COBALT	UG/L	Not Analyzed	Not Analyzed
COPPER	UG/L	Not Analyzed	Not Analyzed
IRON	UG/L	Not Analyzed	Not Analyzed
LEAD	UG/L	Not Analyzed	Not Analyzed
LITHIUM	UG/L	Not Analyzed	Not Analyzed
MAGNESIUM	UG/L	Not Analyzed	Not Analyzed

The flags shown were assigned during chemistry validation.

U - Not detected above the reported quantitation limit.; R - The data is rejected.; J - The reported concentration is an estimated value.

Location Identifier	WDD3	WDD3	
Field Sample Identifier	WDD3-D	WDD3	
Sample Matrix		Surface Water	Surface Water
Depth Interval (ft)		-	-
Date of Sample		05/23/19	10/21/19
Parameter	Units	Field Duplicate	
METALS (FILTERED)			
MANGANESE	UG/L	Not Analyzed	Not Analyzed
MERCURY	UG/L	Not Analyzed	Not Analyzed
MOLYBDENUM	UG/L	Not Analyzed	Not Analyzed
NICKEL	UG/L	Not Analyzed	Not Analyzed
POTASSIUM	UG/L	Not Analyzed	Not Analyzed
SELENIUM	UG/L	Not Analyzed	Not Analyzed
SILVER	UG/L	Not Analyzed	Not Analyzed
SODIUM	UG/L	Not Analyzed	Not Analyzed
THALLIUM	UG/L	Not Analyzed	Not Analyzed
VANADIUM	UG/L	Not Analyzed	Not Analyzed
ZINC	UG/L	Not Analyzed	Not Analyzed

The flags shown were assigned during chemistry validation.

U - Not detected above the reported quantitation limit.; R - The data is rejected.; J - The reported concentration is an estimated value.

Location Identifier Field Sample Identifier Sample Matrix		SWSD009 swsD009 Sediment	SWSD009 SWSD009 Sediment	SWSD009 SWSD009-D Sediment	SWSD010 SWSD010 Sediment	SWSD010 SWSD010 Sediment
Depth Interval (ft) Date of Sample		- 05/24/19	- 10/22/19	10/22/19	- 05/29/19	- 10/23/19
Parameter	Units	03/14/13	10/22/13	Field Duplicate	03/23/13	10/20/19
METALS						
ALUMINUM	MG/KG	30,300	14,100	13,600	54,300	33,700
ANTIMONY	MG/KG	4.9	4.9	6.3	2.9 J	15.7
ARSENIC	MG/KG	11.9	14.5	13.7	13	32.3
BARIUM	MG/KG	166	113 J	114	228	216
BERYLLIUM	MG/KG	1.3 J	0.82 J	0.74 J	2.1 J	1.8 J
BORON	MG/KG	66.1	24.5	23.1	66.1	39.7 J
CADMIUM	MG/KG	1.1	2.6	2.1	0.41 U	0.69 U
CALCIUM	MG/KG	58,000	61,900	55,300	50,800	68,400
CHROMIUM, TOTAL	MG/KG	88.3	202 J	52.6 J	99.3	171
COBALT	MG/KG	13	10.2	10.9	18.1	25.4
COPPER	MG/KG	67.2	71.5	74.4	14.6	148
IRON	MG/KG	29,800	22,300	23,500	44,800	58,000
LEAD	MG/KG	60.4	53.2	59.2	31.3	103
LITHIUM	MG/KG	44.5	24.3	25.9	64.8	61.9
MAGNESIUM	MG/KG	15,300	12,900	12,900	19,700	23,900
MANGANESE	MG/KG	741	717	636	766	1,370
MERCURY	MG/KG	0.086 J	0.21 J	0.16 J	0.131 J	0.33 U
MOLYBDENUM	MG/KG	3.3 J	2.6 J	3 J	4.2 J	15.2
NICKEL	MG/KG	37.9	28.6	31	49.2	71.3
POTASSIUM	MG/KG	8,430	2,670	2,090	17,100	6,450
SELENIUM	MG/KG	2.9 U	3.6 J	3.6 J	4.1 U	10.1 J

The flags shown were assigned during chemistry validation.

U - Not detected above the reported quantitation limit.; R - The data is rejected.; J - The reported concentration is an estimated value.

Location Identifier		SWSD009	SWSD009	SWSD009	SWSD010	SWSD010
Field Sample Identifier		SWSD009	SWSD009	SWSD009-D	SWSD010	SWSD010
Sample Matrix		Sediment	Sediment	Sediment	Sediment	Sediment
Depth Interval (ft)		-	-	-	-	-
Date of Sample		05/24/19	10/22/19	10/22/19	05/29/19	10/23/19
Parameter	Units			Field Duplicate		
METALS						
SILVER	MG/KG	0.29 U	0.32 U	0.28 U	0.41 U	0.69 U
SODIUM	MG/KG	628	440	403	482	818
THALLIUM	MG/KG	1.7 U	1.9 U	1.7 U	2.5 U	4.2 U
VANADIUM	MG/KG	60.3	33 J	30.4	94.2	73.4
ZINC	MG/KG	443	341	364	226	681

The flags shown were assigned during chemistry validation.

U - Not detected above the reported quantitation limit.; R - The data is rejected.; J - The reported concentration is an estimated value.

Location Identifier		SWSD011	SWSD011	SWSD021	SWSD021	SWSD022
Field Sample Identifier Sample Matrix		SWSD011	SWSD011	SWSD021	SWSD021	SWSD022
		Sediment	Sediment	Sediment	Sediment	Sediment
Depth Interval (ft)		-	-	-	-	-
Date of Sample		05/29/19	10/23/19	05/30/19	10/23/19	05/29/19
Parameter	Units					
METALS						
ALUMINUM	MG/KG	29,500	21,200	44,300	11,800	45,500
ANTIMONY	MG/KG	2.6 J	5 J	1.4 U	4.4	4.1 J
ARSENIC	MG/KG	8.2	17	10.3	12.9	11.3
BARIUM	MG/KG	140	151 J	195	100 J	218
BERYLLIUM	MG/KG	1.2 J	1.2 U	1.8 J	0.63 U	1.8 J
BORON	MG/KG	40.4	23 J	47.1	14.2 J	58.6
CADMIUM	MG/KG	0.38 U	0.58 U	0.35 U	4.8	0.35 U
CALCIUM	MG/KG	28,900	34,900	41,400	85,700	24,600
CHROMIUM, TOTAL	MG/KG	62.7	67.2	111	23.9	87.5
COBALT	MG/KG	11.1	14.3	16.5	7.9	15.5
COPPER	MG/KG	22.7	48.1	2.6 J	68.8	33.8
IRON	MG/KG	26,700	35,900	41,000	20,200	37,400
LEAD	MG/KG	24.9	27.8	7.9	86.6	52.8
LITHIUM	MG/KG	34.7	35.8	54	19.6	53.2
MAGNESIUM	MG/KG	10,800	12,400	15,600	28,200	17,100
MANGANESE	MG/KG	847	1,480	686	557	498
MERCURY	MG/KG	0.099 J	0.24 U	0.101 J	0.13 U	0.041 J
MOLYBDENUM	MG/KG	2.5 J	2.3 U	1.4 U	4	3.3 J
NICKEL	MG/KG	29.7	38.2	42	26.3	43.3
POTASSIUM	MG/KG	9,230	4,380	13,300	2,680	13,900
SELENIUM	MG/KG	3.8 U	6.7 J	3.5 U	3.2 U	3.5 U

The flags shown were assigned during chemistry validation.

 $[\]label{eq:concentration} \textbf{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value.}$

Location Identifier		SWSD011	SWSD011	SWSD021	SWSD021	SWSD022
Field Sample Identifier		SWSD011	SWSD011	SWSD021	SWSD021	SWSD022
Sample Matrix		Sediment	Sediment	Sediment	Sediment	Sediment
Depth Interval (ft)		-	-	-	-	-
Date of Sample		05/29/19	10/23/19	05/30/19	10/23/19	05/29/19
Parameter	Units					
METALS						
SILVER	MG/KG	0.38 U	0.58 U	0.35 U	0.32 U	0.35 U
SODIUM	MG/KG	261	392	291	304	399
THALLIUM	MG/KG	2.3 U	3.5 U	2.1 U	1.9 U	2.1 U
VANADIUM	MG/KG	54.9	43.1 J	76	34.8 J	78.1
ZINC	MG/KG	253	318	101	468	322

The flags shown were assigned during chemistry validation.

U - Not detected above the reported quantitation limit.; R - The data is rejected.; J - The reported concentration is an estimated value.

Location Identifier Field Sample Identifier Sample Matrix		SWSD022 SWSD022 Sediment	SWSD023 swsD023 Sediment	SWSD023 swsD023 Sediment	SWSD025 swsD025 Sediment	SWSD025 SWSD025 Sediment
Depth Interval (ft) Date of Sample		10/23/19	- 05/24/19	10/22/19	03/13/19	- 05/29/19
Parameter	Units					
METALS						
ALUMINUM	MG/KG	17,800	15,300	32,200	40,900	34,300
ANTIMONY	MG/KG	6.4	4.5	2.1 J	6.2 J	6 J
ARSENIC	MG/KG	17	9.7	26.7	8.2	14.1
BARIUM	MG/KG	159 J	102	184 J	211	174
BERYLLIUM	MG/KG	1.1 U	0.67 J	1.6 J	1.8 J	1.5 J
BORON	MG/KG	18.8 J	25.5	16 J	62.2	50.5
CADMIUM	MG/KG	0.53 U	2.5	0.37 U	0.8 J	0.67 U
CALCIUM	MG/KG	23,800	73,200	51,900	37,200	31,800
CHROMIUM, TOTAL	MG/KG	55.2	34.2	100	73.7	75.4
COBALT	MG/KG	11.8	16.5	19.7	15.9	14.4
COPPER	MG/KG	39.1	100	29.4	60.2	39.6
IRON	MG/KG	30,700	19,400	46,700	41,800	38,700
LEAD	MG/KG	25.5	106	6.2	28.6	39.5
LITHIUM	MG/KG	30.9 J	33.6	54.6	46	44.4
MAGNESIUM	MG/KG	10,600	28,600	16,100	14,400	15,000
MANGANESE	MG/KG	1,230	510	836	1,040	890
MERCURY	MG/KG	0.21 U	0.2 J	0.2 J	0.1 J	0.201 J
MOLYBDENUM	MG/KG	3.2 J	5.8	1.5 U	2.2 U	4.4 J
NICKEL	MG/KG	34.1	26.7	50.6	38.6	40
POTASSIUM	MG/KG	3,670	4,530	6,020	11,800	10,200
SELENIUM	MG/KG	6.2 J	2.9 U	6.8 J	5.5 U	6.7 U

The flags shown were assigned during chemistry validation.

U - Not detected above the reported quantitation limit.; R - The data is rejected.; J - The reported concentration is an estimated value.

Location Identifier		SWSD022	SWSD023	SWSD023	SWSD025	SWSD025
Field Sample Identifier		SWSD022	SWSD023	SWSD023	SWSD025	SWSD025
Sample Matrix		Sediment	Sediment	Sediment	Sediment	Sediment
Depth Interval (ft)		-	-	-	-	-
Date of Sample		10/23/19	05/24/19	10/22/19	03/13/19	05/29/19
Parameter	Units					
METALS						
SILVER	MG/KG	0.53 U	0.29 U	0.37 U	33	0.67 U
SODIUM	MG/KG	405	350	272	331	366
THALLIUM	MG/KG	3.2 U	1.7 U	2.8 J	4.6 J	4 U
VANADIUM	MG/KG	39.2 J	36.5	57 J	76.3	70.8
ZINC	MG/KG	221	868	121	287	343

The flags shown were assigned during chemistry validation.

U - Not detected above the reported quantitation limit.; R - The data is rejected.; J - The reported concentration is an estimated value.

Location Identifier		SWSD025	SWSD025	SWSD025	WDD2	WDD2
Field Sample Identifier		SWSD025	SWSD025	SWSD025	WDD2	WDD2
Sample Matrix		Sediment	Sediment	Sediment	Sediment	Sediment
Depth Interval (ft)		-	-	-	-	-
Date of Sample		05/29/19 Field Duplicate	08/28/19	10/23/19	05/24/19	10/22/19
Parameter	Units	. Ioia Bapiloato				
METALS						
ALUMINUM	MG/KG	40,500	21,700	23,900	11,200	11,800
ANTIMONY	MG/KG	5.9 J	10.5	6.4 J	1.2 J	2 J
ARSENIC	MG/KG	13.1	11.1	23.2	5.9	8.3
BARIUM	MG/KG	194	172	185 J	65.8	136
BERYLLIUM	MG/KG	1.6 J	1.2 J	1.3 J	0.47 J	0.91 U
BORON	MG/KG	57.5	24.2 J	19.6 J	12.1 J	9.1 U
CADMIUM	MG/KG	0.52 U	0.53 U	0.58 U	0.49 J	0.46 U
CALCIUM	MG/KG	29,000	34,200	44,400	59,900	37,800
CHROMIUM, TOTAL	MG/KG	78.4	66.1	72.7	17.8	18
COBALT	MG/KG	14.4	17.5	18.3	6.7	7.8
COPPER	MG/KG	29.9	73	69	17.2	18
IRON	MG/KG	37,900	39,000	45,300	18,600	21,200
LEAD	MG/KG	38.6	46.7	47.2	6.9	7
LITHIUM	MG/KG	44.7	41	46.3	27.6	23.6 J
MAGNESIUM	MG/KG	15,200	14,000	16,100	17,100	6,080
MANGANESE	MG/KG	794	1,160	1,280	1,040	2,470
MERCURY	MG/KG	0.065 J	0.25 U	0.21 U	0.0701 J	0.19 U
MOLYBDENUM	MG/KG	3.7 J	7.1	3.8 J	1.3 J	1.8 U
NICKEL	MG/KG	39.6	45.9	48.5	15.8	18.6
POTASSIUM	MG/KG	13,000	3,740	4,430	2,890	2,140
SELENIUM	MG/KG	5.2 U	5.3 U	7.2 J	2.3 U	4.6 U

The flags shown were assigned during chemistry validation.

U - Not detected above the reported quantitation limit.; R - The data is rejected.; J - The reported concentration is an estimated value.

Location Identifier		SWSD025	SWSD025	SWSD025	WDD2	WDD2
Field Sample Identifier		SWSD025	SWSD025	SWSD025	WDD2	WDD2
Sample Matrix		Sediment	Sediment	Sediment	Sediment	Sediment
Depth Interval (ft)		-	-	-	-	-
Date of Sample		05/29/19	08/28/19	10/23/19	05/24/19	10/22/19
Parameter	Units	Field Duplicate				
METALS						
SILVER	MG/KG	0.52 U	0.53 U	0.58 U	0.23 U	0.46 U
SODIUM	MG/KG	346	453	342	117	244
THALLIUM	MG/KG	3.1 U	3.2 U	3.5 U	1.4 U	2.7 U
VANADIUM	MG/KG	77.7	48.8	50.7 J	26.8	20.8
ZINC	MG/KG	358	376	361	83.3	158

The flags shown were assigned during chemistry validation.

U - Not detected above the reported quantitation limit.; R - The data is rejected.; J - The reported concentration is an estimated value.

Location Identifier Field Sample Identifier Sample Matrix Depth Interval (ft) Date of Sample	WDD3 WDD3 Sediment - 05/24/19	WDD3 WDD3 Sediment - 10/22/19	
Parameter	Units		
METALS			
ALUMINUM	MG/KG	25,600	21,500
ANTIMONY	MG/KG	1.2 J	2 J
ARSENIC	MG/KG	5.9	18.5
BARIUM	MG/KG	140	234
BERYLLIUM	MG/KG	0.87 J	1.1 J
BORON	MG/KG	29.5	10.2 J
CADMIUM	MG/KG	0.24 U	0.83 J
CALCIUM	MG/KG	33,100	82,800
CHROMIUM, TOTAL	MG/KG	31.4	33.3
COBALT	MG/KG	9.8	17.8
COPPER	MG/KG	32	28.1
IRON	MG/KG	24,400	39,000
LEAD	MG/KG	7.8	6.4
LITHIUM	MG/KG	33.9	40
MAGNESIUM	MG/KG	9,820	19,200
MANGANESE	MG/KG	866	2,330
MERCURY	MG/KG	0.0781 J	0.14 U
MOLYBDENUM	MG/KG	0.97 U	2.2 J
NICKEL	MG/KG	22.3	38.9
POTASSIUM	MG/KG	7,770	3,820
SELENIUM	MG/KG	2.4 U	5.6 J

The flags shown were assigned during chemistry validation.

U - Not detected above the reported quantitation limit.; R - The data is rejected.; J - The reported concentration is an estimated value.

Location Identifier	WDD3	WDD3	
Field Sample Identifier	WDD3	WDD3	
Sample Matrix		Sediment	Sediment
Depth Interval (ft)		-	-
Date of Sample		05/24/19	10/22/19
Parameter	Units		
METALS			
SILVER	MG/KG	0.24 U	0.34 U
SODIUM	MG/KG	261	364
THALLIUM	MG/KG	5.1	2 U
VANADIUM	MG/KG	42.2	41.7
ZINC	MG/KG	115	131

The flags shown were assigned during chemistry validation.

U - Not detected above the reported quantitation limit.; R - The data is rejected.; J - The reported concentration is an estimated value.

Location Identifier		SWSD009	SWSD009	SWSD009	SWSD010	SWSD010
Field Sample Identifier		SWSD009	SWSD009	SWSD009-D	SWSD010	SWSD010
Sample Matrix		Sediment	Sediment	Sediment	Sediment	Sediment
Depth Interval (ft)		-	-	-	-	-
Date of Sample		05/24/19	10/22/19	10/22/19 Field Duplicate	05/29/19	10/23/19
Parameter	Units			Fleid Duplicate		
SEMI-VOLATILE ORGANIC ANALYSES						
ACENAPHTHENE	UG/KG	32.6 U	31.8 U	28.9 UJ	45.4 U	81.2 U
ACENAPHTHYLENE	UG/KG	32.6 U	31.8 U	28.9 UJ	45.4 U	81.2 U
ANTHRACENE	UG/KG	47.7 J	38 J	36.9 J	45.4 U	81.2 U
BENZO(A)ANTHRACENE	UG/KG	212	126 J	138 J	45.4 U	114 J
BENZO(A)PYRENE	UG/KG	227	128 J	132 J	45.4 U	114 J
BENZO(B)FLUORANTHENE	UG/KG	319	130 J	142 J	45.4 U	129 J
BENZO(G,H,I)PERYLENE	UG/KG	188 J	93.1 J	98.3 J	45.4 U	108 J
BENZO(K)FLUORANTHENE	UG/KG	113 J	119 J	121 J	45.4 U	104 J
CHRYSENE	UG/KG	238	141 J	153 J	45.4 U	84.8 J
DIBENZ(A,H)ANTHRACENE	UG/KG	48.2 J	31.8 U	29.9 J	45.4 U	81.2 U
FLUORANTHENE	UG/KG	423	258	333 J	45.4 U	132 J
FLUORENE	UG/KG	36 J	31.8 U	28.9 UJ	45.4 U	81.2 U
INDENO(1,2,3-C,D)PYRENE	UG/KG	173 J	100 J	95.3 J	45.4 U	112 J
NAPHTHALENE	UG/KG	32.6 U	31.8 U	28.9 UJ	45.4 U	81.2 U
PHENANTHRENE	UG/KG	202	122 J	184 J	45.4 U	81.2 U
PYRENE	UG/KG	359	228	270 J	45.4 U	144 J

The flags shown were assigned during chemistry validation.

 $[\]label{eq:constraint} \textbf{U-Not detected above the reported quantitation limit.; R-The data is rejected.; J-The reported concentration is an estimated value.}$

Location Identifier		SWSD011	SWSD011	SWSD021	SWSD021	SWSD022
Field Sample Identifier		SWSD011	SWSD011	SWSD021	SWSD021	SWSD022
Sample Matrix		Sediment	Sediment	Sediment	Sediment	Sediment
Depth Interval (ft)		-	-	-	-	-
Date of Sample	ı	05/29/19	10/23/19	05/30/19	10/23/19	05/29/19
Parameter	Units					
SEMI-VOLATILE ORGANIC ANALYSES						
ACENAPHTHENE	UG/KG	39.4 U	59.8 U	35.9 U	35.1 U	37.5 U
ACENAPHTHYLENE	UG/KG	39.4 U	59.8 U	35.9 U	35.1 U	37.5 U
ANTHRACENE	UG/KG	39.4 U	59.8 U	35.9 U	35.1 U	37.5 U
BENZO(A)ANTHRACENE	UG/KG	39.4 U	59.8 U	35.9 U	35.1 U	37.5 U
BENZO(A)PYRENE	UG/KG	39.4 U	59.8 U	35.9 U	35.1 U	37.5 U
BENZO(B)FLUORANTHENE	UG/KG	39.4 U	59.8 U	35.9 U	35.1 U	37.5 U
BENZO(G,H,I)PERYLENE	UG/KG	39.4 U	59.8 U	35.9 U	35.1 U	37.5 U
BENZO(K)FLUORANTHENE	UG/KG	39.4 U	59.8 U	35.9 U	35.1 U	37.5 U
CHRYSENE	UG/KG	39.4 U	59.8 U	35.9 U	35.1 U	37.5 U
DIBENZ(A,H)ANTHRACENE	UG/KG	39.4 U	59.8 U	35.9 U	35.1 U	37.5 U
FLUORANTHENE	UG/KG	39.4 U	59.8 U	35.9 U	35.1 U	37.5 U
FLUORENE	UG/KG	39.4 U	59.8 U	35.9 U	35.1 U	37.5 U
INDENO(1,2,3-C,D)PYRENE	UG/KG	39.4 U	59.8 U	35.9 U	35.1 U	37.5 U
NAPHTHALENE	UG/KG	39.4 U	59.8 U	35.9 U	35.1 U	37.5 U
PHENANTHRENE	UG/KG	39.4 U	59.8 U	35.9 U	35.1 U	37.5 U
PYRENE	UG/KG	39.4 U	59.8 U	35.9 U	35.1 U	37.5 U

The flags shown were assigned during chemistry validation.

U - Not detected above the reported quantitation limit.; R - The data is rejected.; J - The reported concentration is an estimated value.

Location Identifier		SWSD022	SWSD023	SWSD023	SWSD025	SWSD025
Field Sample Identifier		SWSD022	SWSD023	SWSD023	SWSD025	SWSD025
Sample Matrix		Sediment	Sediment	Sediment	Sediment	Sediment
Depth Interval (ft)		-	-	-	-	-
Date of Sample	ı	10/23/19	05/24/19	10/22/19	03/13/19	05/29/19
Parameter	Units					
SEMI-VOLATILE ORGANIC ANALYSES						
ACENAPHTHENE	UG/KG	53.9 UJ	40 J	39 U	0.91 J	72.6 U
ACENAPHTHYLENE	UG/KG	53.9 UJ	55.3 J	39.7 J	1.2 J	72.6 U
ANTHRACENE	UG/KG	53.9 UJ	113 J	81.8 J	2.3 J	72.6 U
BENZO(A)ANTHRACENE	UG/KG	53.9 UJ	451 J	279	13.7	72.6 U
BENZO(A)PYRENE	UG/KG	53.9 UJ	458 J	292	15.8	72.6 U
BENZO(B)FLUORANTHENE	UG/KG	53.9 UJ	724 J	358	23.7	72.6 U
BENZO(G,H,I)PERYLENE	UG/KG	53.9 UJ	557 J	314	14.4	72.6 U
BENZO(K)FLUORANTHENE	UG/KG	53.9 UJ	246 J	327	9.7 J	72.6 U
CHRYSENE	UG/KG	53.9 UJ	513 J	404	17.1	72.6 U
DIBENZ(A,H)ANTHRACENE	UG/KG	53.9 UJ	106 J	57.3 J	5.2 J	72.6 U
FLUORANTHENE	UG/KG	53.9 UJ	954 J	542	25	72.6 U
FLUORENE	UG/KG	53.9 UJ	68.8 J	39.6 J	1.5 J	72.6 U
INDENO(1,2,3-C,D)PYRENE	UG/KG	53.9 UJ	384 J	213 J	14.9	72.6 U
NAPHTHALENE	UG/KG	53.9 UJ	57 J	60.9 J	1.3 J	72.6 U
PHENANTHRENE	UG/KG	53.9 UJ	290 J	229 J	9.7 J	72.6 U
PYRENE	UG/KG	53.9 UJ	916 J	579	24	72.6 U

The flags shown were assigned during chemistry validation.

U - Not detected above the reported quantitation limit.; R - The data is rejected.; J - The reported concentration is an estimated value.

Location Identifier		SWSD025	SWSD025	SWSD025	WDD2	WDD2
Field Sample Identifier		SWSD025	SWSD025	SWSD025	WDD2	WDD2
Sample Matrix		Sediment	Sediment	Sediment	Sediment	Sediment
Depth Interval (ft)		-	-	-	=	-
Date of Sample	ı	05/29/19	08/28/19	10/23/19	05/24/19	10/22/19
Parameter	Units	Field Duplicate				
SEMI-VOLATILE ORGANIC ANALYSES						
ACENAPHTHENE	UG/KG	54.6 U	63.7 U	59.9 U	26.3 U	45.9 U
ACENAPHTHYLENE	UG/KG	54.6 U	63.7 U	59.9 U	26.3 U	45.9 U
ANTHRACENE	UG/KG	54.6 U	63.7 U	59.9 U	26.3 U	45.9 U
BENZO(A)ANTHRACENE	UG/KG	54.6 U	63.7 U	59.9 U	46.4 J	45.9 U
BENZO(A)PYRENE	UG/KG	54.6 U	63.7 U	59.9 U	40 J	45.9 U
BENZO(B)FLUORANTHENE	UG/KG	54.6 U	63.7 U	59.9 U	52.8 J	45.9 U
BENZO(G,H,I)PERYLENE	UG/KG	54.6 U	63.7 U	59.9 U	26.7 J	45.9 U
BENZO(K)FLUORANTHENE	UG/KG	54.6 U	63.7 U	59.9 U	26.3 U	45.9 U
CHRYSENE	UG/KG	54.6 U	63.7 U	59.9 U	27 J	45.9 U
DIBENZ(A,H)ANTHRACENE	UG/KG	54.6 U	63.7 U	59.9 U	26.3 U	45.9 U
FLUORANTHENE	UG/KG	54.6 U	63.7 U	59.9 U	45 J	45.9 U
FLUORENE	UG/KG	54.6 U	63.7 U	59.9 U	26.3 U	45.9 U
INDENO(1,2,3-C,D)PYRENE	UG/KG	54.6 U	63.7 U	59.9 U	26.3 U	45.9 U
NAPHTHALENE	UG/KG	54.6 U	63.7 U	59.9 U	26.3 U	45.9 U
PHENANTHRENE	UG/KG	54.6 U	63.7 U	59.9 U	26.3 U	45.9 U
PYRENE	UG/KG	54.6 U	63.7 U	59.9 U	50.3 J	45.9 U

The flags shown were assigned during chemistry validation.

U - Not detected above the reported quantitation limit.; R - The data is rejected.; J - The reported concentration is an estimated value.

Location Identifier	WDD3	WDD3	
Field Sample Identifier	WDD3	WDD3	
Sample Matrix	Sediment	Sediment	
Depth Interval (ft)	-	-	
Date of Sample		05/24/19	10/22/19
Parameter	Parameter Units		
SEMI-VOLATILE ORGANIC ANALYSES			
ACENAPHTHENE	UG/KG	25.6 U	35.1 U
ACENAPHTHYLENE	UG/KG	25.6 U	35.1 U
ANTHRACENE	UG/KG	25.6 U	35.1 U
BENZO(A)ANTHRACENE	UG/KG	25.6 U	35.1 U
BENZO(A)PYRENE	UG/KG	25.6 U	35.1 U
BENZO(B)FLUORANTHENE	UG/KG	25.6 U	35.1 U
BENZO(G,H,I)PERYLENE	UG/KG	25.6 U	35.1 U
BENZO(K)FLUORANTHENE	UG/KG	25.6 U	35.1 U
CHRYSENE	UG/KG	25.6 U	35.1 U
DIBENZ(A,H)ANTHRACENE	UG/KG	25.6 U	35.1 U
FLUORANTHENE	UG/KG	25.6 U	35.1 U
FLUORENE	UG/KG	25.6 U	35.1 U
INDENO(1,2,3-C,D)PYRENE	UG/KG	25.6 U	35.1 U
NAPHTHALENE	UG/KG	25.6 U	35.1 U
PHENANTHRENE	UG/KG	25.6 U	35.1 U
PYRENE	UG/KG	25.6 U	35.1 U

The flags shown were assigned during chemistry validation.

U - Not detected above the reported quantitation limit.; R - The data is rejected.; J - The reported concentration is an estimated value.

ATTACHMENT B MANN-KENDALL TEST RESULTS

ATTACHMENT B-1 TOTAL URANIUM IN SURFACE WATER

2018 Niagai	Falls Storage Site Environmental Surveillance Technical Memorandum	

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 23-May-19 Job ID: Surface Water Facility Name: NFSS Constituent: Total Uranium Concentration Units: ug/L Conducted By: WDD3 Sampling Point ID: TOTAL URANIUM CONCENTRATION (ug/L) Apr-12 1.72 Oct-12 1.47 Apr-13 1.99 3 0.748 Oct-13 4 5 Apr-14 2.7 Oct-14 0.7 Apr-15 2.65 Oct-15 0.812 8 Apr-16 3.08 10 Oct-16 0.303 11 Apr-17 3.79 3.35 Nov-17 12 3.34 13 Apr-18 14 Oct-18 2.67 15 May-19 2.29 16 Oct-19 17 18 19 20 Coefficient of Variation: 0.53 Mann-Kendall Statistic (S) Confidence Factor: 96.1% **Concentration Trend:** Increasing 4.5 4 Concentration (ug/L) 3.5 WDD3 3 2.5 2 1.5 0.5 05/16 09/17 02/19 11/10 04/12 08/13 12/14 06/20 **Sampling Date**

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein.

GSI Environmental Inc., www.gsi-net.com

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Job ID: Surface Water Constituent: Total Uranium Evaluation Date: 23-May-19 Facility Name: Conducted By: Concentration Units: ug/L Sampling Point ID: SWSD025 TOTAL URANIUM CONCENTRATION (ug/L) Apr-11 Aug-11 9.9198 Feb-12 18.8892 Apr-12 11.5 Aug-12 Oct-12 5.12 Feb-13 22.2 10 Apr-13 Aug-13 Oct-13 4.62 12 5.85 Nov-13 10.6 13 14 Feb-14 15 Apr-14 16.6 Aug-14 16 Oct-14 10.6 18 Feb-15 10.8 Apr-15 15. 19 8.91 Aug-15 20 21 Oct-15 Feb-16 12.8 22 16.9 24 Aug-16 9 1 Oct-16 25 2.86 Feb-17 9.63 Apr-17 28 Aug-17 Nov-17 8.54 30 Feb-18 23.8 31 Apr-18 17 Aug-18 33 Oct-18 4.94 Mar-19 12.1 35 May-19 5.06 Aug-19 Oct-19 37 7.74 Coefficient of Variation Mann-Kendall Statistic (S): Confidence Factor Concentration Trend: Stable 25 Concentration (ug/L) 20 15 10 07/09 11/10 04/12 08/13 12/14 05/16 09/17 02/19 06/20 **Sampling Date**

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein.

GSI Environmental Inc., www.gsi-net.com

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 12-May-20 Job ID: Surface Water Constituent: Total Uranium Facility Name: NFSS Conducted By: Concentration Units: ug/L Sampling Point ID: SWSD009 SWSD010 SWSD021 SWSD011 SWSD022 SWSD023 WDD2 TOTAL URANIUM CONCENTRATION (ug/L) 7.47 21.4434 2.77 11.6127 2.376 Apr-98 11.137 12.2364 21.562 14.85 Jun-99 2.97 5.94 2.376 2.36709 5.0311 4.93317 8.48232 5.32224 May-01 5.3163 13.8402 7.1874 26.0469 8.1675 7.8408 May-02 5.1678 10.5 35.4 9.12 5.9994 8.7615 21.6216 Apr-04 3.9204 49 302 12 9492 15 3549 15.0579 May-05 4.4847 9.801 11.1969 14.9094 8.0784 Nov-05 39.501 10 May-06 5.8509 5.5836 8.6427 11.523 5.8212 12 Jun-07 3.5937 11.0187 5.1678 5.1678 5.1678 Nov-0 13 14 Jun-08 6.1479 3.1482 12.147 15.5925 5 2866 4 4253 Oct-08 12 1176 5 7024 8 613 May-09 4.3807 16.8963 15.41727 10.09206 16 Oct-09 4.11048 5.89545 5.80041 8.39619 6.70626 18 May-10 5.2895 15.15294 9.16839 9.28125 9.97029 2.47104 7.4844 5.4648 13.8402 Oct-10 3.267 19 21.4434 15.444 Apr-11 20 21 Oct-11 4.6332 6.623 6.2073 7.8111 6.5043 1.99 22 Apr-12 3.9 12.2 15.3 15.2 Oct-12 6.04 8.15 5.94 5.04 1.51 1.14 24 Apr-13 4.2 15 3 14 : 29 2 17.8 4 86 1 81 Oct-13 4.64 2.11 0.681 25 2.92 3.47 4.95 1.75 Nov-13 10.3 10.7 Apr-14 8.49 43.2 12. 31.: 28 Oct-14 4.25 4.44 19.6 8.21 7.69 5.83 1.28 10.1 15.5 6.58 Apr-15 6.3 30 Oct-15 3.08 3.19 3.43 4.08 3.26 2.37 0.831 31 Apr-16 6.86 12.3 15.6 13.8 16.8 7.67 2.64 0.351 Oct-16 3.37 2.12 33 Apr-17 1 9 3.7 8.08 18.8 5.45 4.47 3.75 Nov-17 8.67 13.1 20.5 16.4 16.6 3.17 3.26 35 10.9 6.93 Apr-18 7.53 13.7 12.3 18.6 3.15 4.95 2.12 Oct-18 6.04 6.68 37 May-19 8.05 10.2 9.65 12.1 11.3 3.8 38 Oct-19 5.96 3.73 7.81 3.83 6.88 3.15 2.24 Coefficient of Variation 0.52 Mann-Kendall Statistic (S): -14 102 Confidence Factor 56.7% 61.7% Prob. Increasing Prob. Decreasing No Trend No Trend Concentration Trend No Trend Stable Increasing 60 SWSD009 -SWSD010 50 Concentration (ug/L) - SWSD011 SWSD021 40 SWSD022 SWSD023 30 WDD2 20 10 07/98 04/01 01/04 10/06 07/09 04/12 12/14 06/20 **Sampling Date**

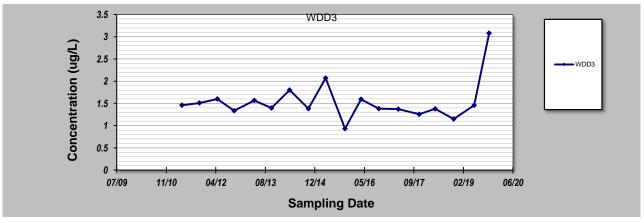
Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

ATTACHMENT B-2 RADIUM-226 IN SEDIMENT (901.1 analysis only)

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 13-May-20 Job ID: Sediment Facility Name: NFSS Constituent: Radium-22 Conducted By: Concentration Units: ug/L SWSD011 SWSD021 Sampling Point ID: SWSD009 SWSD010 SWSD023 WDD2 RADIUM-226 CONCENTRATION (ug/L) Apr-11 1.08 1.25 1.44 1.16 1.77 1.05 1.55 1.01 1.19 1.11 Oct-11 2 1.2 1.3 3 Apr-12 0.926 1.08 1.51 1.25 1.67 0.767 1.25 4 Oct-12 0.948 1.166 1.44 1.296 1.508 0.735 1.348 1.604 5 Apr-13 0.78 1.287 1.557 1.29 0.86 1.262 1.147 1.247 Oct-13 0.922 1.329 1.617 1.803 0.828 6 0.958 1 436 1.754 0.961 Apr-14 1 561 1 293 1 077 8 Oct-14 1.073 2.552 2.669 1.33 0.731 1.343 Apr-15 1.099 1.195 1.782 1.172 2.162 0.828 1.395 10 Oct-15 1.606 2.226 1.671 1.158 2.384 0.957 1.411 11 1.466 1.102 1.627 1.489 2.388 1.099 1.072 Apr-16 12 Oct-16 1 223 1.422 1.508 1 27 1.636 1 003 1 425 13 Apr-17 1.076 1.43 1.627 1.349 2.207 0.88 1.256 14 Nov-17 1.071 1.354 1.59 1.372 1.281 1.358 1.362 15 1.271 2.046 1.909 Apr-18 1.146 0.977 1.251 0.82 16 Oct-18 0.99 1.385 1.653 1.452 1.681 1.012 1.442 17 May-19 1.14 1.63 1.45 1.6 1.58 0.85 0.82 18 Oct-19 1.17 1.5 2.07 1.05 1.46 1.06 1.33 19 20 Coefficient of Variation: 0.19 0.26 0.19 0.17 0.13 Mann-Kendall Statistic (S) Confidence Factor 90.0% 97.6% 79.5% 53.0% 99 5% Concentration Trend: Prob. Increasing No Trend Increasing Increasing No Trend Increasing Prob. Increasing SWSD009 SWSD010 2.5 Concentration (ug/L) SWSD021 2 SWSD022 SWSD023 1.5 WDD2 0.5 07/09 11/10 04/12 08/13 12/14 05/16 09/17 02/19 06/20 Sampling Date

Notes


- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis

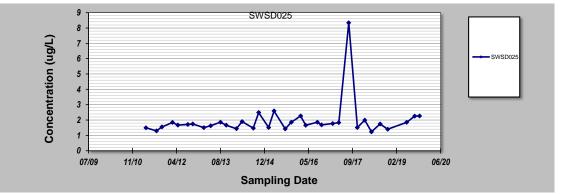
Evaluation Date: 13-May-20	Job ID:	Sediment
Facility Name: NFSS	Constituent:	Radium-226
Conducted By:	Concentration Units:	ug/L

Sampling Point ID: WDD3

	ing i onit ib.	N. 11000						
Sampling Event	Sampling Date		RADIUM-226 CONCENTRATION (ug/L)					
1	Apr-11	1.46						
2	Oct-11	1.51						
3	Apr-12	1.6						
4	Oct-12	1.335						
5	Apr-13	1.568						
6	Oct-13	1.396						
7	Apr-14	1.801						
8	Oct-14	1.382						
9	Apr-15	2.07						
10	Oct-15	0.933						
11	Apr-16	1.592						
12	Oct-16	1.383						
13	Apr-17	1.371						
14	Nov-17	1.256						
15	Apr-18	1.378						
16	Oct-18	1.149						
17	May-19	1.46						
18	Oct-19	3.08						
19								
20								
Coefficien	t of Variation:	0.30						
Mann-Kendal	I Statistic (S):	-20						
Confi	dence Factor:	76.2%						
Concent	tration Trend:	Stable						

Notes:

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.


GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis

Evaluation Date: 13-May-20 Job ID: Sediment Facility Name: NFSS Constituent: Radium-226 Concentration Units: ug/L Conducted By:

Sampling Point ID: SWSD025

Sampling Event	Sampling Date		RADIUM-2	26 CONCENTRAT	ION (ug/L)		
1	Apr-11	1.49	Г			Г	Г
2	Aug-11	1.29					
3	Oct-11	1.55					
4	Feb-12	1.84					
5	Apr-12	1.67					
6	Aug-12	1.71					
7	Oct-12	1.743					
8	Feb-13	1.503					
9	Apr-13	1.624					
10	Aug-13	1.859					
11	Oct-13	1.663					
12	Feb-14	1.435					
13	Apr-14	1.897					
14	Aug-14	1.468					
15	Oct-14	2.488					
16	Feb-15	1.511					
17	Apr-15	2.591					
18	Aug-15	1.419					
19	Oct-15	1.854					
20	Feb-16	2.264					
21	Apr-16	1.658					
22	Aug-16	1.858					
23	Oct-16	1.685					
24	Feb-17	1.772					
25	Apr-17	1.826					
26	Aug-17	8.338					
27	Nov-17	1.51					
28	Feb-18	1.989					
29	Apr-18	1.231					
30	Aug-18	1.739					
31	Oct-18	1.397					
32	May-19	1.85					
33	Aug-19	2.25					
34	Oct-19	2.26					
35	,	0.00					
	t of Variation:	0.60					
Mann-Kendal	i Statistic (S):	115					

Confidence Factor Concentration Trend: Increasing

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

ATTACHMENT B-3 URANIUM-238 IN SEDIMENT

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Job ID: Sediment Constituent: U-238 Evaluation Date: 13-May-20 Facility Name: NFSS Conducted By: Concentration Units: ug/L Sampling Point ID: SWSD009 SWSD010 SWSD011 SWSD022 SWSD023 SWSD021 WDD2 U-238 CONCENTRATION (ug/L) Jun-99 1.021 1.08 0.951 1.04 1.068 Jul-00 May-02 2.55 1.74 1.36 1.24 1.54 May-03 1.24 1.42 1.15 1.24 1.04 Apr-04 0.869 1.13 1.15 1.22 May-05 1.22 1.82 1.4 1.21 1.38 Nov-05 1.44 1.47 May-06 1.43 10 Jun-07 1.59 1.74 0.969 0.863 1.33 0.87 12 1.22 Jun-08 Oct-08 1.13 2.76 1.22 1.19 1.97 0.88 13 1.11 14 May-09 0.8679 2.282 1.633 1.17 2.123 1.179 1.219 0 7944 Oct-09 1 32 2 623 1.2 1 338 3 055 0.9161 May-10 0.987 1.235 1.215 0.8181 16 Nov-10 0.969 1.61 1.43 2.02 0.945 18 Apr-11 1.79 1.48 1.26 1.91 0.937 1.2 1.13 1.88 1.43 1.99 1.19 Oct-11 19 1.3 1.26 0.741 0.915 1.48 Apr-12 1.23 1.14 20 21 Oct-12 0.999 2.6 1.08 1.04 2.04 0.845 1.36 0.852 2.07 0.996 0.911 0.963 22 Apr-13 1.67 1.95 0.677 0.971 1.68 1.7 1.19 1.32 1.13 24 Apr-14 0.815 1.7 1.26 0.89 1 94 0.965 0.811 Oct-14 1.01 0.884 25 1.44 1.39 2.56 0.767 1.03 26 2.63 0.679 2.05 0.838 1.19 Apr-15 1.3 2.31 Oct-15 2.15 2.3 0.93 0.687 0 986 28 Apr-16 1.28 1.27 1.66 1.2 0.846 Oct-16 1.18 1.98 1.03 2.16 30 Apr-17 1.08 2.18 1.9 1.01 1.96 0.95 0.777 31 Nov-17 1.34 1.88 1.48 1.24 1.62 1.12 1.57 1.54 Apr-18 1.62 33 Oct-18 0.802 2.51 1.62 0.925 1.65 0.805 May-19 Oct-19 1.01 2.9 2.07 1.07 1.66 0.93 0.68 35 1.06 3.06 0.94 2.09 1.12 1.78 1.44 37 Coefficient of Variation 0.17 Mann-Kendall Statistic (S): 181 Confidence Factor 61.6% Stable No Trend Concentration Trend Decreasing Increasing Increasing Decreasing Prob. Increasing - SWSD009 4.5 - SWSD010 Concentration (ug/L) - SWSD011 3.5 SWSD021 SWSD022 SWSD023 2.5 WDD2 2 1.5 0.5 06/94 03/97 12/99 09/02 05/05 02/08 11/10 08/13 05/16 02/19 **Sampling Date**

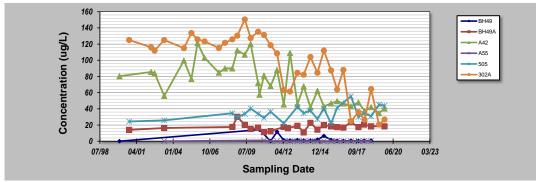
Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥90% = Probably Increasing or Probably Decreasing; <90% and S>0 = No Trend; <90%, S≤0, and COV ≥ 1 = No Trend; <90% and COV <1 = Stable.
- Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Job ID: Sediment Constituent: U-238 Evaluation Date: 13-May-20 Facility Name: NFSS Concentration Units: ug/L Conducted By: Sampling Point ID: WDD3 U-238 CONCENTRATION (ug/L) Jun-99 Jul-00 May-02 May-03 Apr-04 May-05 Nov-05 May-06 10 Jun-07 12 Jun-08 1.2 Oct-08 13 14 May-09 1.074 Oct-09 15 1 147 May-10 16 Nov-10 0.757 18 Apr-11 1.02 Oct-11 19 0.784 Apr-12 20 21 Oct-12 0.929 1.07 22 Apr-13 0.996 24 Apr-14 1 34 Oct-14 0.664 25 Apr-15 1.44 Oct-15 28 Apr-16 1.04 Oct-16 1.25 30 Apr-17 1.21 31 Nov-17 1.29 Apr-18 33 Oct-18 0.897 May-19 Oct-19 34 35 0.93 1.94 37 Coefficient of Variation Mann-Kendall Statistic (S): Confidence Factor Concentration Trend No Trend 2.5 WDD3 Concentration (ug/L) 2 WDD3 1.5 0.5 02/08 07/09 11/10 04/12 08/13 12/14 09/17 02/19 06/20 **Sampling Date**

- At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Job ID: Sediment Constituent: U-238 Evaluation Date: 13-May-20 Facility Name: NFSS Conducted By: Concentration Units: ug/L Sampling Point ID: SWSD025 U-238 CONCENTRATION (ug/L) 1.71 Feb-11 Apr-11 Oct-11 2.08 Feb-12 1.76 Apr-12 Aug-12 1.53 Oct-12 1.81 10 Feb-13 1.73 2.15 12 Aug-13 1.93 Oct-13 3.73 13 14 Feb-14 1.97 15 Apr-14 2 37 Aug-14 16 Oct-14 2.89 18 Feb-15 3.04 Apr-15 2.08 19 1.83 Aug-15 20 21 Oct-15 2.24 Feb-16 22 1.84 24 Aug-16 1.73 Oct-16 25 2.61 Feb-17 1.7 Apr-17 28 Aug-17 Nov-17 1.81 30 Feb-18 1.96 31 Apr-18 2.21 Aug-18 33 Oct-18 2.02 Mar-19 1.92 35 2.42 May-19 Aug-19 37 Oct-19 2 41 Coefficient of Variation Mann-Kendall Statistic (S): 161 Confidence Factor Concentration Trend: Increasing SWSD025 3.5 3 2.5 2 1.5 0.5 07/09 11/10 04/12 08/13 12/14 05/16 09/17 02/19 06/20 **Sampling Date**


Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

ATTACHMENT B-4 TOTAL URANIUM IN GROUNDWATER

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis

luation Date acility Name anducted By				Job ID: 2019 ESP				
				1				
	pling Point ID:	BH49	BH49A	A42	A55	505	302A	
Sampling Event	Sampling Date			TOTAL URA	NIUM CONCENTRA	ATION (ug/L)		
1	Jan-00	0		80.3				
2	Sep-00		14			24.4	125	
3	May-02			85.6			116	
4	Aug-02			83.9			112	
5	May-03		16.3	56	0	25.8	125	
6	Nov-04			99.7			115	
7	May-05			76.9			133.72	
8	Nov-05			121.22			125.86	
9	May-06			103.03			123.23	
10	Jun-07			84.67			115.18	
11	Nov-07			89.95			121.6	
12	Jun-08		17.62	89.95		34.6	125.82	
13	Oct-08		30.14	112.26		29.53	130.42	
14	May-09		20.23	106.88		33.59	150.47	
15	Oct-09		15.07	120.21		40.32	127.53	
16	May-10		16.72	71.91		33.82	135.23	
17	Jun-10	14.25		57.39				
18	Oct-10		11.23	81.07	0.99	28.82	131.3	
19	Apr-11	0	12.35	68.11	0.01	36.4	118.54	
20	Oct-11	11.84		87.88	0.23		108.48	
21	Apr-12	1.23	17.6	45.4	0.129	22.1	63.1	
22	Aug-12		16					
23	Oct-12	0.904		109	0.03		61.3	
24	Apr-13	1.47	19	45.6	0.111	42.4	84.5	
25	Oct-13	0.701	11	67.8	0.107	34.7	82.2	
26	Apr-14	0.723	22.7	41.8	0.076	37.8	104	
27	Oct-14	1.98	14.3	62.3	0.103	27.4	84.6	
28	Apr-15	6.59	19.9	43	0.13	40.4	112	
29	Oct-15	1.62	18.4	46.8	0.141	21.9	87.5	
30	Apr-16	0.505	17.3	49.5	0.134	41.3	64	
31	Sep-16	0.443	16.8				88.1	
32	Oct-16			46.7	0.059			
33	Apr-17	0.645	23.5	43.1	0.059	55.5	24.6	
34	Nov-17	0.408	17.4	47.9	0.039	30.1	35.9	
35	Apr-18	0.638	20.6		0.178	34.4		
36	May-18			37.4			26.5	
37	Oct-18	0.742	18.4	42.2	0.226	30.9	64.3	
38	May-19			34.7		45.2	20.6	
39	Oct-19		18.4	40.4		43.8	26.9	
40								
	nt of Variation:	1.66	0.23	0.37	1.43	0.24	0.39	
Mann-Kenda	II Statistic (S):	-28	57	-314	18	81	-289	
Confi	idence Factor:	84.4%	91.7%	>99.9%	73.8%	98.3%	>99.9%	

Decreasing

No Trend

Increasing

Decreasing

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

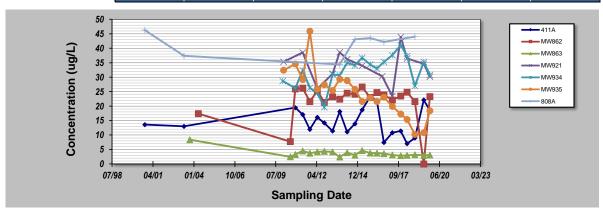
Prob. Increasing

Concentration Trend:

No Trend

- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; \geq 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S \leq 0, and COV \geq 1 = No Trend; < 90% and COV < 1 = Stable.
- Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 20-May-19 Job ID: 2018 ESP TM Constituent: TOTAL URANIUM Facility Name: NFSS Concentration Units: ug/L Conducted By: Sampling Point ID: MW922 TOTAL URANIUM CONCENTRATION (ug/L) Sep-00 May-03 Oct-03 Apr-04 5 Dec-09 31.1 Jan-10 Jun-10 8 Oct-10 9 27.71 Nov-10 10 Apr-11 11 32.6 Oct-11 12 Apr-12 13 28 Oct-12 14 Apr-13 15 Oct-13 16 Apr-14 33.2 17 Oct-14 18 Apr-15 19 32.8 Oct-15 20 Apr-16 21 Aug-16 22 30.6 Sep-16 23 30.2 Apr-17 24 Nov-17 34.2 25 Apr-18 26 Oct-18 27.6 27 28 29 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor: No Trend **Concentration Trend:** 40 MW922 -MW922 35 Concentration (ug/L) 30 25 20 15 10 02/08 07/09 11/10 04/12 08/13 12/14 05/16 10/06 09/17 02/19 06/20 Sampling Date


Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis

Evaluation Date: 18-May-20	Job ID: 2019 ESP TM
Facility Name: NFSS	Constituent: TOTAL URANIUM
Conducted By:	Concentration Units: ug/L

Sam	pling Point ID:	411A	MW862	MW863	MW921	MW934	MW935	808A	
Sampling Event	Sampling Date		TOTAL URANIUM CONCENTRATION (ug/L)						
1	Sep-00	13.6						46.3	
2	May-03	13						37.4	
3	Oct-03			8.39					
4	Apr-04		17.4						
5	Dec-09					28.67			
6	Jan-10				35.34		32.43		
7	Jun-10		7.73	2.5					
8	Oct-10	19.46	25.94	3.3		26.19	34.55		
9	Nov-10								
10	Apr-11	17.07	26.21	4.52	38.54	32.37	29.2		
11	Oct-11	11.94	21.56	3.74		26.3	45.89		
12	Apr-12	16.1	25.3	4.16	26	24.5	25.9		
13	Oct-12	14.2	21.3	4.37		19.6	27.4		
14	Apr-13	11.4	23.2	4.16	31.2	31	25.4		
15	Oct-13	18.1	22.4	2.44	38.6	30.6	29.3	34.4	
16	Apr-14	11.1	24.5	3.93	36.2	35	28.8		
17	Oct-14	13.9	24.1	3.04		34.1	25.8	43.1	
18	Apr-15	18.7	26.6	4.64	34	36.7	21.6		
19	Oct-15	23.2	23	3.75		34.4	22.9	43.5	
20	Apr-16	21.9	24.7	3.77		33	21.6		
21	Aug-16	-			30.3				
22	Sep-16	7.45	23.9	3.58		35.3	23.1	42.2	
23	Apr-17	10.8	22.1	3.09	23.5	37.6	19.9		
24	Nov-17	11.4	23.5	2.86	43.9	41.1	17.3		
25	Apr-18	7.03	24.8	2.97	36.5	37.3	15.4		
26	Oct-18	9	21.6	3.16		27	10.2	44	
27	May-19	22.1	234	2.95	34.6	35.3	10.8		
28	Oct-19	18.5	23.3	3.07	30.2	30.8	18.4		
29									
30									
Coefficien	nt of Variation:	0.32	0.18	0.33	0.16	0.16	0.34	0.10	
	Il Statistic (S):	-19	14	-71	-8	81	-145	3	
	dence Factor:	70.5%	66.1%	98.4%	66.2%	99.6%	>99.9%	61.4%	
	tration Trend	Stable	No Trend	Decreasing	Stable	Increasing	Decreasing	No Trend	

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 18-May-20 Job ID: 2019 ESP TM Facility Name: NFSS Constituent: TOTAL URANIUM Concentration Units: ug/L Conducted By: Sampling Point ID: OW15A OW17A TOTAL URANIUM CONCENTRATION (ug/L) 0.794 Jan-00 Oct-00 May-02 May-03 5 Jun-10 0.82 6 1.27 Oct-10 Apr-11 0.32 1.08 8 1.37 Oct-11 9 0.426 1.5 Apr-12 10 0.56 1.34 Oct-12 11 0.481 1.45 Apr-13 12 Oct-13 0.372 13 0.497 Apr-14 1.36 14 0.535 Oct-14 15 0.41 Apr-15 1.13 16 Oct-15 0.402 1.15 17 Feb-16 0.274 18 0.867 Apr-16 19 Sep-16 1.1 20 Oct-16 21 0.367 1.67 Apr-17 22 Nov-17 0.348 1.65 23 0.337 Apr-18 1.16 24 May-18 25 Oct-18 0.472 1.08 26 May-19 0.353 2.05 27 0.493 1.04 Oct-19 28 29 Coefficient of Variation: Mann-Kendall Statistic (S): Confidence Factor: Concentration Trend: Prob. Decreasing Stable 4.5 OW15A Concentration (ug/L) 3.5 3 2.5 OW17A 2 1.5 0.5 01/04 10/06 07/09 04/12 12/14 07/98 04/01 09/17 06/20 03/23 Sampling Date

Notes


- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

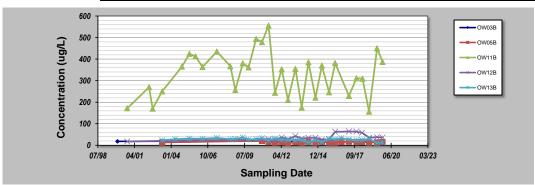
GSI MANN-KENDALL TOOLKIT

for Constituent Trend Analysis

Constituents TOTAL LIDANIUM	
Facility Name: NFSS Constituent: TOTAL URANIUM	
Concentration Units: ug/L	

Samp	ling Point ID:	OW03A	OW05A	OW06A	OW07A	OW11A	OW12A	OW13A
Sampling Event	Sampling Date		TOTAL URANIUM CONCENTRATION (ug/L)					
1	Jan-00	10.8	1.53	1.93				
2	Oct-00				1.44			2.04
3	May-02		1.98					
4	May-03				1.25	1.47		2.4
5	Jun-10			0.38				
6	Oct-10	13.11	1.27	3.11	2.34	1.47	4.72	2.62
7	Apr-11	13.04	2.5	0.91	1.71	1.21	3.75	3.31
8	Oct-11	11.2	2.98	1.37	1.28	1.32	3.06	3.37
9	Apr-12	12.7	1.82	2.64	1.77	3.6	6.34	2.39
10	Oct-12	11.3	2.03	2.14	1.66	2.67	5.36	2.28
11	Apr-13	9.95	2.3	2.07	1.9	2.45	4.83	2.47
12	Oct-13	18.4	2.08	2.07	1.51	1.73	4.95	2.4
13	Apr-14	8.61	2.31	1.99	1.68	1.55	4.36	2.47
14	Oct-14	9.58	1.96	1.78	1.94	1.96	4.4	2.47
15	Apr-15	10.4	2	1.45	1.79	1.25	4.41	2.5
16	Oct-15	9.82	1.78	1.71	1.62	2.08	3.73	2.87
17	Feb-16							
18	Apr-16	11.7	1.91	1.77	1.66	1.9	3.88	2.41
19	Sep-16	11.7		1.35	1.54			2.45
20	Oct-16		1.68			1.88	3.6	
21	Apr-17	12.4	2.15	2.42	0.936	2.67	3.52	2.47
22	Nov-17	11.6	2.21	2.93	1.58	2.02	3.41	2.24
23	Apr-18	10.9	2.14		1.57		3.44	2.19
24	May-18			1.45		1.58		
25	Oct-18	10.1	1.79	1.28	1.4	2.46	3.46	2.36
26	May-19	10.5	2.06	1.89	1.58	4.14	3.71	2.35
27	Oct-19	11.4	1.74	1.42	1.67	1.9	3.39	3.15
28								
29								
30								
Coefficien	t of Variation:	0.18	0.18	0.35	0.18	0.37	0.20	0.14
Mann-Kendal	l Statistic (S):	-27	-12	-26	-24	51	-89	-17
Confi	dence Factor:	79.8%	62.9%	77.2%	75.4%	94.8%	99.9%	68.4%
Concen	tration Trend:	Stable	Stable	Stable	Stable	Prob. Increasing	Decreasing	Stable

Notes

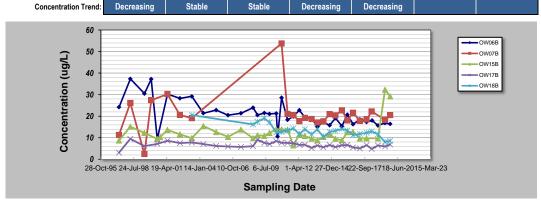

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Job ID: 2019 ESP TM Constituent: TOTAL URANIUM Evaluation Date: 18-May-20 Facility Name: NFSS Concentration Units: ug/L Conducted By: Sampling Point ID: OW04B OW04A TOTAL URANIUM CONCENTRATION (ug/L) May-09 72.4 1.76 1.32 49.88 Oct-09 May-10 59.12 27.05 1.63 2.17 43.04 Oct-10 Feb-11 64.64 5.27 59.58 38.74 1.93 1.79 Aug-11 49.22 Oct-11 10 52.85 3.15 42.5 37.4 2.11 2.54 Apr-12 12 Aug-12 Oct-12 40.3 1.82 Feb-13 46.7 15 2.38 Apr-13 55.8 Aug-13 49.3 45.5 16 2.6 2.44 Oct-13 47.5 Apr-14 19 Aug-14 46.8 1.92 1.99 20 Oct-14 49.7 46.5 Feb-15 49.6 2.1 2.11 Apr-15 Aug-15 46.5 45.1 1.93 Oct-15 25 26 Feb-16 Apr-16 50.6 Aug-16 50.2 2.45 38.5 2.61 Oct-16 Feb-17 49.6 3.89 Apr-17 47.4 4.11 Aug-17 46 Nov-17 35.5 3.83 Feb-18 36.4 3.68 Apr-18 42.2 3.17 33.6 34.3 2.9 3.19 Oct-18 37 Mar-19 May-19 37.9 2.28 Aug-19 Oct-19 30.8 32.7 2.03 Coefficient of Variation 0.34 Mann-Kendall Statistic (S): Confidence Factor Decreasing Concentration Trend Increasing 80 70 - OW04A Concentration (ug/L) 60 40 30 20 10 02/08 07/09 11/10 04/12 08/13 12/14 02/19 06/20 **Sampling Date**

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥90% = Probably Increasing or Probably Decreasing; <90% and S>0 = No Trend; <90%, S≤0, and COV ≥ 1 = No Trend; <90% and COV <1 = Stable.
- Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Evaluation Date: 18-May-20 Job ID: 2019 ESP TM Constituent: TOTAL URANIUM **Facility Name:** NFSS Conducted By: Concentration Units: ug/L Sampling Point ID: OW03B OW05B OW11B OW13B OW12B TOTAL URANIUM CONCENTRATION (ug/L) Jan-00 18.1 Oct-00 270 170 May-02 23.5 250 May-03 Apr-04 Nov-04 365 424.69 31.4 May-05 413.16 Nov-05 363.13 435.46 30.22 10 34.2 Jun-07 12 366.69 28.13 Jun-08 13 Oct-08 256.8 30.16 380.51 36.35 26.95 May-09 15 Oct-09 362.06 16 May-10 493.76 28.75 33.01 19.79 20.74 Oct-10 478.8 18 16.92 17.39 14.74 23.41 Apr-11 19 13.45 244.04 24.74 353 210 36.6 28.4 20 Apr-12 15.6 14.4 25 9.79 Oct-12 355 175 385 17.1 14.9 42.8 Apr-13 30.8 Oct-13 8.91 12.1 17.6 12.7 Apr-14 15.1 25 26 Oct-14 18.5 19.2 13.2 15.5 221 370 34.8 26.5 24.3 14.2 Apr-15 246 Oct-15 17.3 13.7 28.1 30.3 13.2 382 62.8 27.8 33.3 Apr-16 16.4 Sep-16 30 15.5 Oct-16 Apr-17 16.7 229 64.2 17 17.1 63.3 58.1 24.1 24.3 Nov-17 311 16.3 Apr-18 34 35 309 May-18 156 450 35.2 May-19 15.2 13.6 38.2 10.8 37 36.5 Oct-19 16.8 15.5 387 13 Coefficient of Variation 0.13 0.31 0.37 Mann-Kendall Statistic (S): 0 Confidence Factor 87.0% Stable Concentration Trend No Trend Stable Increasing Decreasing 600 OW03B 500 OW05B 400 OW12B



Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥90% = Probably Increasing or Probably Decreasing; <90% and S>0 = No Trend; <90%, S≤0, and COV ≥ 1 = No Trend; <90% and COV <1 = Stable.
- Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

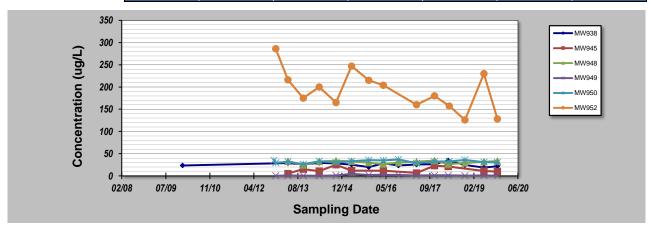
GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis

Evaluation Date:	18-May-20			1	Job ID:	2019 ESP TM		
Facility Name:	NFSS					TOTAL URANI	UM	
Conducted By:					Concentration Units:	ug/L		
Samp	ling Point ID:	OW06B	OW07B	OW15B	OW17B	OW18B		
Sampling	Sampling			TOTAL UDA	ANIUM CONCENTR	ATION (well)		
Event	Date			TOTAL UK	ANIUW CONCENTR	ATION (ug/L)		
1	Apr-97	24.2	11.3	8.69	3.03			
2	Apr-98	37.3	26.12	15.14	9.52			
3	Jun-99	30.49	2.47	12.26	6.11			
4	Jan-00	37.2	27.44					
5	Jul-00	9.43		9.43	7.17			
6	Oct-00			10.3				
7	May-01	30.28	30.27	13.64	8.62			
8	May-02	28.3	20.6	11.6	7.52			
9	May-03	29.2	19.1	9.82	7.79	20.5		
10	Apr-04	21.39		15.42	7.07			
11	May-05	22.85		12.62	6.21			
12	May-06	20.48		10.42	5.93			
13	Jun-07	21.37		13.77	5.74			
14	Jun-08	23.93		9.83	6.08	16.17		
15	Oct-08	20.53		11.13	9.06	17.45		
16	May-09	21.49		10.83	7.65	19.03		
17	Oct-09	21.04		12.23	7.07	17.19		
18	May-10	21.28		13.98	8.47	12.5		
19	Jun-10	10.64						
20	Oct-10	28.59	53.75	13.93	7.66	12.68		
21	Apr-11	18.31	21.05	13.75	7.57	13.43		
22	Oct-11	19.85	20.45	6.5	7.44	14.3		
23	Apr-12	22.8	17.7	11.5	6.69	11.8		
24	Oct-12	19.4	19.2	10.8	6.8	13.9		
25	Apr-13	18.9	18.7	9.59	5.25	11.6		
26	Oct-13	15.2	17.1	8.84	6.4	13.9		
27	Apr-14	17.2	17.6	10.4	5.57	10.4		
28	Oct-14	15.8	20.9	11.6	6.64	12.7		
29	Apr-15	19.1	20.4	9.55	5.69	13.2		
30	Oct-15	15.4	22.7	8.83	6.53	14.1		
31 32	Apr-16	20.7	18.1	12.6	6.62	13.4		
	Sep-16	16.3	21.6	12.7	5.48	11.2		
33 34	Apr-17	18.5	17.8	9.66	5.04	11.8		
	Nov-17	17.3	18.5	9.72	6.56	12.3		
35	Apr-18	40	22.2	 	4.83	13		
36 37	May-18	18	 	0.74	6.20	11.6		
	Oct-18	15.7	10.2	9.74	6.39	11.6		
38	May-19	16.8	18.3	32.3	5.96	8.02		
39 40	Oct-19	16.4	20.5	29.2	6.87	8.58		
	t of Variation:	0.29	0.41	0.41	0.19	0.22		
Mann-Kendal		-368	-20	-20	-182	-161		
	dence Factor:	-368 >99.9%	67.0%	60.6%	99.5%	-161 >99.9%		
Contic	Jenice Factor:	>99.9%	67.0%	60.6%	99.5%	>99.9%		

- At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- 2. Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing; ≥ 90% = Probably Increasing or Probably Decreasing; < 90% and S>0 = No Trend; < 90%, S≤0, and COV ≥ 1 = No Trend; < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis Job ID: 2019 ESP TM Constituent: TOTAL URANIUM Evaluation Date: 18-May-20 Facility Name: NFSS Concentration Units: ug/L Conducted By: Sampling Point ID: A43 A45 A50 TOTAL URANIUM CONCENTRATION (ug/L) Apr-97 32.67 12.66 21.33 Apr-98 46.16 Jun-99 30.53 18.36 36.6 Jan-00 44.1 17.6 16.75 Jul-00 62.46 May-01 40.09 23.09 May-02 29.3 15.7 15.2 42.8 May-03 16.04 Apr-04 33.42 6.77 17.25 10 May-05 33.02 May-06 Jun-07 43.66 12 18.98 39.62 13 Jun-08 16.67 17.67 20.93 Oct-08 40.78 15 May-09 36.73 16 Oct-09 27.99 May-10 40.14 18.06 18 15.94 Oct-10 31.2 19 Apr-11 20 Aug-11 34.81 15.94 Oct-11 23.92 27.6 13.7 Feb-12 Apr-12 19.8 16.6 Oct-12 25 26 16.3 16.7 Apr-13 36.3 32.9 33.6 Oct-13 26.4 Apr-14 32.6 16.2 36 Aug-14 Oct-14 40.5 29.2 17.8 30 40 16.5 Apr-15 34.8 Oct-15 39.8 35 16.6 Apr-16 38.9 16.7 Sep-16 34 35 18.4 Oct-16 83.9 34 9 15.4 28.7 42.2 Nov-17 36.9 16.3 37 14.6 Apr-18 Oct-18 30.7 16.7 68.6 May-19 40.9 34 Oct-19 43.7 12.2 Coefficient of Variation Mann-Kendall Statistic (S): 17 Confidence Factor Decreasing Concentration Trend No Trend Stable 90 80 A45 Concentration (ug/L) 70 60 50 40 30 20 10 10/95 07/98 04/01 01/04 10/06 07/09 04/12 12/14 09/17 06/20 03/23 **Sampling Date**

Notes


- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥90% = Probably Increasing or Probably Decreasing; <90% and S>0 = No Trend; <90%, S≤0, and COV ≥ 1 = No Trend; <90% and COV <1 = Stable.
- Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT

for Constituent Trend Analysis

Evaluation Date: 18-May-20	Job ID:	2019 ESP TM	
Facility Name: NFSS	Constituent:	TOTAL URANIU	M
Conducted By:	Concentration Units:	ug/L	

Sampling Date		TOTAL URANIUM CONCENTRATION (ug/L)						
Dec-09								
Jan-10	23.42							
Nov-12								
Dec-12				0.363	29.4	286		
Feb-13								
Apr-13	28.7	5.25	33.1	0.803	31.8	216		
Aug-13								
Oct-13	25.9	15.3		0.469	26.3	175		
Apr-14	29.2	10.7		0.289	33.1	200		
Oct-14								
Apr-15	25.3	11.9		4.44	32.9	247		
Oct-15	19.7		29.7	2.1	35.4	215		
Apr-16	28.1	11.6	26.6	2.25	34.9	204		
Sep-16	23.3		29.7	2.04	36.9			
Oct-16								
Apr-17	25.5	6.55	31.9	1.02	28.7	160		
Nov-17	26.3	22.9	34.5	1.27	32.2	180		
Apr-18	34.7	21.2	26.6	1.14				
May-18					32.6	157		
Oct-18	24.4		29.1	0.506	36	126		
May-19	18.8	11.2	31.7	1.08	31	230		
Oct-19	21.6	9.71	33.4	0.721	30.6	128		
t of Variation:		0.48	0.10	0.82	0.09			
I Statistic (S):	-27	-1	-1	7	8			
dence Factor:	89.9%	50.0%	50.0%	61.5%	62.2%	98.7%		
	Date Dec-09 Jan-10 Nov-12 Dec-12 Feb-13 Apr-13 Aug-13 Oct-13 Apr-14 Oct-14 Apr-15 Oct-15 Apr-16 Sep-16 Oct-16 Apr-17 Nov-17 Apr-18 May-18 Oct-18 May-19 Oct-19 t of Variation: I Statistic (S):	Date Dec-09 Jan-10 23.42 Nov-12 Dec-12 Feb-13 Apr-13 28.7 Aug-13 Oct-13 25.9 Apr-14 29.2 Oct-14 28.3 Apr-15 25.3 Oct-15 19.7 Apr-16 28.1 Sep-16 23.3 Oct-16 Apr-17 25.5 Nov-17 26.3 Apr-18 34.7 May-18 Oct-18 24.4 May-19 18.8 Oct-19 21.6 t of Variation: 0.16 I Statistic (S): -27	Date Dec-09 Jan-10 23.42 Nov-12 Dec-12 Feb-13 Apr-13 28.7 5.25 Aug-13 0ct-13 25.9 15.3 Apr-14 29.2 10.7 Oct-15 25.3 11.9 Oct-15 19.7 Apr-16 28.1 11.6 Sep-16 23.3 Oct-16 6.55 Apr-17 25.5 6.55 Nov-17 26.3 22.9 Apr-18 34.7 21.2 May-18 Oct-18 24.4 May-19 18.8 11.2 Oct-19 21.6 9.71 t of Variation: 0.16 0.48 I Statistic (S): -27 -1	Date IOTAL URA Dec-09 Jan-10 23.42 Nov-12 Dec-12 Feb-13 Apr-13 28.7 5.25 33.1 Aug-13 0ct-13 25.9 15.3 24.6 Apr-14 29.2 10.7 32.4 Oct-14 28.3 25.2 33.9 Apr-15 25.3 11.9 32.7 Oct-15 19.7 29.7 Apr-16 28.1 11.6 26.6 Sep-16 23.3 29.7 Oct-16 0.7 34.5 Apr-17 25.5 6.55 31.9 Nov-17 26.3 22.9 34.5 Apr-18 34.7 21.2 26.6 May-18 0ct-18 24.4 29.1 May-19 18.8 11.2 31.7 Oct-19 21.6 9.71 33.4	Date Dec-09 Jan-10 23.42 Dec-12 Dec-12 Dec-12 Dec-13 Dec-13 Dec-14 Dec-13 Dec-14 Dec-13 Dec-15 Dec-15 Dec-15 Dec-16 Dec-	Date Dec-09 Jan-10 23.42 35 Dec-12 0.363 29.4 Feb-13 35 Dec-12 0.363 29.4 Feb-13 36 Dec-14 28.7 5.25 33.1 0.803 31.8 Aug-13 0ct-14 28.3 25.9 15.3 24.6 0.469 26.3 26.3 27.4 28.3 25.2 33.9 1.12 30.1 27.4 29.2 27.4 29.7 2.1 35.4 29.7 29.7 2.1 35.4 29.7 29.7 2.1 35.4 29.7 29.7 2.04 36.9 26.9	Date Date Dec-09	

Stable

No Trend

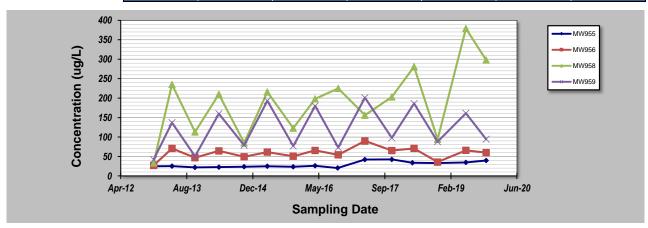
No Trend

Decreasing

Notes

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

Stable


Stable

Concentration Trend:

- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis

Evaluation Date :	Evaluation Date: 18-May-20			Job ID: 2019 ESP TM				
Facility Name: NFSS			Constituent: TOTAL URANIUM					
Conducted By	Conducted By:				Concentration Units: ug/L			
Sam	pling Point ID:	MW955	MW956	MW958	MW959			
Sampling	Sampling			TOTAL LIDA	NIIIIM CONCENTE	TION (. /I)		
Event	Date			TOTAL UKA	ANIUM CONCENTRA	ATION (ug/L)		
1	Dec-09							
2	Jan-10							
3	Nov-12							
4	Dec-12	24.7	27	33.2	41.7			
5	Feb-13							
6	Apr-13	25.2	70.8	235	137			
7	Aug-13							
8	Oct-13	22	46.8	113	50.3			
9	Apr-14	22.5	64.3	210	160			
10	Oct-14	23.7	49.1	84.8	78.6			
11	Apr-15	24.9	61.2	216	193			
12	Oct-15	23.3	50.5	123	76.8			
13	Apr-16	26.1	65.5	198	180			
14	Sep-16	20.3						
15	Oct-16		54.2	225	72.9			
16	Apr-17	42.1	89.8	156	201			
17	Nov-17	42.3	65.2	203	97.6			
18	Apr-18	33.8						
19	May-18		70.6	281	186			
20	Oct-18	32.8	35.5	94	88			
21	May-19	34.7	65.8	379	161			
22	Oct-19	39.6	59.8	298	94.3			
23								
24								
25								
Coefficier	nt of Variation:	0.26	0.26	0.48	0.45			
	ıll Statistic (S):	49	23	39	25			
Conf	idence Factor:	99.2%	85.9%	97.1%	88.0%			

Increasing

No Trend

Notes

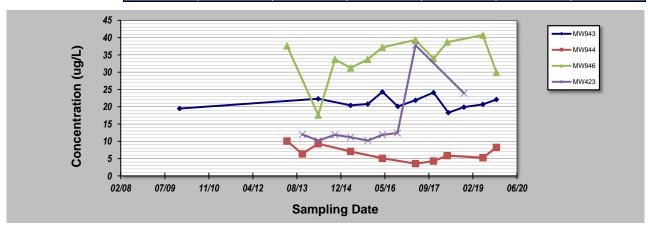
Concentration Trend:

Increasing

1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.

No Trend

- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.


DISCLAIMER: The GSI Mann-Kendall Toolkit is available "as is". Considerable care has been exercised in preparing this software product; however, no party, including without limitation GSI Environmental Inc., makes any representation or warranty regarding the accuracy, correctness, or completeness of the information contained herein, and no such party shall be liable for any direct, indirect, consequential, incidental or other damages resulting from the use of this product or the information contained herein. Information in this publication is subject to change without notice. GSI Environmental Inc., disclaims any responsibility or obligation to update the information contained herein.

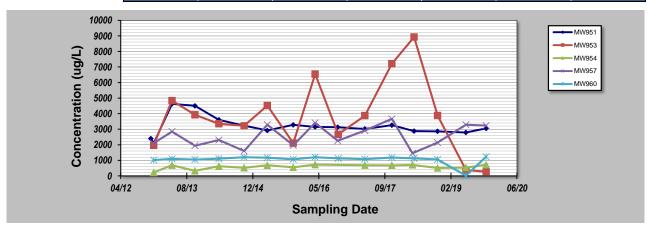
GSI Environmental Inc., www.gsi-net.com

GSI MANN-KENDALL TOOLKIT for Constituent Trend Analysis

_				
Evaluation Date:	18-May-20	Job ID:	2019 ESP TM	
Facility Name:	NFSS	Constituent:	TOTAL URANIU	M
Conducted By:		Concentration Units:	ug/L	

Samp	oling Point ID:	MW943	MW944	MW946	MW423				
Sampling Event	Sampling Date		TOTAL URANIUM CONCENTRATION (ug/L)						
1	Dec-09	19.5							
2	Jan-10								
3	Nov-12								
4	Dec-12								
5	Feb-13								
6	Apr-13		10.1	37.6					
7	Aug-13								
8	Oct-13		6.37		12				
9	Apr-14	22.3	9.32	17.6	10.2				
10	Oct-14			33.7	11.9				
11	Apr-15	20.4	7.08	31.2	11.2				
12	Oct-15	20.8		33.7	10.2				
13	Apr-16	24.3	5.1	37.2	11.9				
14	Sep-16				12.4				
15	Oct-16	20.1							
16	Apr-17	21.9	3.56	39.3	37.8				
17	Nov-17	24.1	4.29	33.9					
18	Apr-18		5.87	38.7					
19	May-18	18.3							
20	Oct-18	19.9			23.9				
21	May-19	20.7	5.25	40.7					
22	Oct-19	22.1	8.27	29.9					
23									
24									
25									
Coefficien	t of Variation:	0.09	0.33	0.19	0.59				
Mann-Kendal	I Statistic (S):	2	-13	16	16				
Confi	dence Factor:	52.7%	85.4%	87.5%	94.0%				
Concen	tration Trend:	No Trend	Stable	No Trend	Prob. Increasing				

Notes


- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.

GSI MANN-KENDALL TOOLKIT

for Constituent Trend Analysis

Evaluation Date: 18-May-20	Job ID:	2019 ESP TM
Facility Name: NFSS	Constituent:	TOTAL URANIUM
Conducted By:	Concentration Units:	ug/L

Samp	ling Point ID:	MW951	MW953	MW954	MW957	MW960		
Sampling	Sampling			TOTAL LIDAN	IIIIM CONCENTE	ATION (/L)		
Event	Date			TOTAL URAN	NIUM CONCENTR	(ATION (ug/L)		
1	Dec-09							
2	Jan-10							
3	Nov-12	2400						
4	Dec-12	2090	1970	218	2100	1010		
5	Feb-13							
6	Apr-13	4631	4843	687	2846	1097		
7	Aug-13							
8	Oct-13	4502	3929	322	1944	1049		
9	Apr-14	3601	3351	620	2310	1109		
10	Oct-14	3231	3221	523	1600	1201		
11	Apr-15	2917	4523	682	3290	1165		
12	Oct-15	3280	2106	548	1967	1063		
13	Apr-16	3145	6547	724	3410	1204		
14	Sep-16	3130			2260			
15	Oct-16		2671			1124		
16	Apr-17	3018	3875	689	2913	1080		
17	Nov-17	3257	7207	680	3666	1177		
18	Apr-18		·	711	1459			
19	May-18	2879	8927			1126		
20	Oct-18	2861	3884	508	2141	1060		
21	May-19	2791	376	532	3290	16.1		
22	Oct-19	3052	277	720	3234	1232	·	
23								
24								
25						<u> </u>		
	t of Variation:	0.20	0.62	0.27	0.28	0.28		
Mann-Kendal		-34	-5	27	22	17		
Confi	dence Factor:	93.0%	57.7%	92.1%	84.8%	78.2%		
Concen	tration Trend:	Prob. Decreasing	Stable	Prob. Increasing	No Trend	No Trend		

Notes

- 1. At least four independent sampling events per well are required for calculating the trend. Methodology is valid for 4 to 40 samples.
- Confidence in Trend = Confidence (in percent) that constituent concentration is increasing (S>0) or decreasing (S<0): >95% = Increasing or Decreasing;
 ≥ 90% = Probably Increasing or Probably Decreasing;
 < 90% and S>0 = No Trend;
 < 90%, S≤0, and COV ≥ 1 = No Trend;
 < 90% and COV < 1 = Stable.
- 3. Methodology based on "MAROS: A Decision Support System for Optimizing Monitoring Plans", J.J. Aziz, M. Ling, H.S. Rifai, C.J. Newell, and J.R. Gonzales, Ground Water, 41(3):355-367, 2003.