Good Evening, my name is Mick Senus, I am the Project Manager for the former Lake Ontario Ordnance Works site (or LOOW). The Corps is working in conjunction the Town of Lewiston to address public safety concerns at the former LOOW Waste Water Treatment Plant (WWTP). I am here to present a project summary, update, and proposed schedule.

Please note that no work has been started yet, mobilization for this project is planned for later this Spring.

The figure on this slide shows the former LOOW site (in green). The Niagara Falls Storage Site (NFSS) is located within the developed area of the former LOOW and is shown in the central portion of this figure. The former WWTP is located on the northern border of NFSS, shown here in blue.
The project's primary objective is to address public safety hazards resulting from deteriorated World War II era facilities at the former LOOW Waste Water Treatment Plant. The project will be split into 2 phases: Phase 1 being removal structural hazards addressed by the Corps and Phase 2 being the site security and installation of signage, addressed by the town.

Walking through the site you will see evidence of trespassing such as ATV tracks, bonfire debris, trash, graffiti, and ballistics impacts (or bullet holes) to plant structures. Physical hazards at this remote location include several falling or drowning hazards in open pits and vaults, tripping hazards due to dense vegetation surrounding existing structures, and overhead hazards such as the concrete canopy at the former Acid Neutralization Building. To correct these problems at the site, the Office of Economic Adjustment (OEA) has funded the Corps and the Town of Lewiston to mitigate these public safety hazards.

I would like to mention at this time, that this is a safety project and neither a FUDS nor a FUSRAP project. In 2009, funding was requested by Congresswoman Slaughter (NY-28) and the Town of Lewiston from the OEA. In August and September of this year, funding was received by both the Corps and the Town for their respective portions of the project. This Spring the Corps will begin the first phase of the project which includes: demolition of deteriorated structures, foundations, steel railings, and wooden tanks; backfilling excavations; and disposing of demolition debris and water. In partnership with the Corps’ work, the Town will complete the project and secure the site by installing fencing, grates over open pits and vaults, and “No trespassing” signage. Further to the west, the Town will also remove a small section of the 30-in outfall as it crosses the South West Drainage Ditch (SWDD).

REF: Eliminate Public Safety Hazards, Niagara County 2010 earmark list from P.L. 111-118 and Section 8041 authority that pertains to OEA Congressional Ads.
The photo on the left is an example of one of the overhead hazards from the concrete canopy I had mentioned on the previous slide.

On the figure to the right of the screen, the WWTP is located one-half mile south of Balmer Road in the town of Lewiston shown here by the blue arrow. The property is about 22-acres in size and has been owned by the Town of Lewiston since 1975.

The site is bounded on in the east by Lutts Road (also known as the former A Avenue) and by National Grid power easement to the west. Chemical Waste Management property is to the north and east.

And the Niagara Falls Storage Site property is located to the south.
This 1942 photograph is a panoramic view of the site at the time of operation.

Various structures associated with the plant from left to right are: a sanitary sewage Pumping Station, (SHOW ON SCREEN) an Imhoff tank (seen in the background) (SHOW ON SCREEN), a Venturi Vault adjacent to the intersection of these two roads, and the Acid Neutralization Building (on the far right).

The intent of the former WWTP in 1942 was to treat wastewater generated solely by DoD operations: sanitary waste; acid waste; TNT production waste; and other process-related wastewater (i.e., boron production).
In the photograph at the bottom of the slide, you can see the plant during operation as viewed from the western border of the property. Please note that in order to show this photo and map in landscape view, I need to orient you to the north arrow on the left side of the screen. For reference, NFSS is south, located to the right of the screen.

At the top of the slide is a site map of the WWTP. A single sanitary sewer line entered the WWTP from the east (SHOW ON SCREEN). Sanitary waste was first mixed in a venturi vault, located here (SHOW ON SCREEN). After mixing, the sanitary waste was settled in the Imhoff tank (SHOW ON SCREEN). At this point, liquid waste was gravity-fed from the Imhoff tank to a collection tank and solid waste was transferred to one of two sludge beds (SHOW ON SCREEN) associated with the Imhoff tank. Upon entering the Collection Tank, the sewage wastewater was combined with treated acid waste and chemical waste. The resulting mixture was then gravity-transferred to the former mixing house where it was combined with TNT production waste. Once mixed, the treated wastewater was discharged to the Niagara River through the 30-inch diameter outfall pipe (SHOW ON SCREEN).
Last month the Corps awarded a contract to deconstruct the above-ground reinforced concrete of the Acid Neutralization Building canopy. The contractor was also scoped to remove all steel railings and two large wooden tanks.

Both above ground and below ground structures of the Pump House and Venturi Vault will be completely removed.

All water in structures below grade of these two structures will be removed, characterized, and transported in accordance with State and Federal regulations and the disposal facility’s waste acceptance criteria (WAC). Once Pump House and Venturi Vault removals are complete, the excavations will be backfilled with clean fill.

All of the structures I have just mentioned were targeted for deconstruction because they presented the greatest public safety hazards at the site.
This is a 1942 photo of the Acid Neutralization Building. This building was used to neutralize acid waste received by the WWTP. The bottom photo was taken this summer showing the east and north faces of the remaining structure. The above-ground concrete canopy will be removed.

REF: Typically, the neutralization medium was lump limestone or marble chips, with high calcium carbonate content. Acid wastes entering the system percolate through the limestone or marble and were chemically buffered to an acceptable pH level in preparation for discharge.
This photograph shows 2 large Wooden Tanks on site that were used for lime storage. During the treatment process, lime was used to make pH adjustments to the acid waste. Both of these deteriorated tanks will be removed.

REF: The contractor will provide extra volume for split samples.

To supplement the RI/FS a full-suite chemical analysis and also sampled for radionuclides. **Chemical analysis:** Target Compound List VOCs, SVOCs, explosives, pesticides, PCBs, and TAL metals, plus boron and lithium.

REF: This adjustment facilitated precipitation of metals into sludge, which would then settle to the bottom of the acid neutralization vaults for easy removal upon dewatering of the vaults.
The upper photo is what the Imhoff tank looked like at the time of construction.

The lower photo was taken from the top of the Imhoff tank. In the background you can see the Acid Neutralization Building. Besides the steel railings seen here, the Corps contractor will also remove similar railings at the Collection Tank and the Chlorine tank.

REF: Imhoff tanks are essentially a solids separation system. Settling takes place in the upper chamber of the Imhoff tank, from which solids settle (and are digested under anaerobic conditions) and conveyed to beds where sludge was spread and dried. Water drained from the sludge was removed and transferred back to the Imhoff tank for processing. This system was designed to have the sludge removed from the sludge beds after 6-9 month of drying. The clarified water from the Imhoff tank was then chlorinated prior to discharge to the mixing house.
This is a 1942 photo of the WWTP’s Venturi Vault taken during construction. This Venturi Vault system was used to promote aeration of the sanitary wastewater stream.

This structure, water and sludge will be entirely removed and then backfilled with clean #2 crushed stone. 4-6” of topsoil and Annual ryegrass will then be placed over the clean fill. In addition to the Venturi Vault, the Pumping Station will also be entirely removed. Both of these structures will also have entering and exiting utilities grouted with up to 2-feet of concrete.

REF: Venturi pump systems supply large amounts of air to wastewater by mixing, providing oxygen to bacteria and other microorganisms that consume organic matter.
Any permanent structures placed on site will be installed by the Town of Lewiston. This phase of the project will include:

- construction of a security fence,
- installation of “No Trespassing” signs,
- installation of permanent grates over all pits and vaults, and
- removal of the 30-in outfall portion as it crosses the SWDD.
The planned fence line will be constructed adjacent to this road at the western edge of the property. This is a view looking south towards NFSS.

This area is the only remaining portion of the property that is not currently bounded by a fence. Once complete, this fence will restrict public access from CWM property southward to NFSS.
This photograph taken this summer shows a pit and 24-inch wood pipeline on the western edge of the acid neutralization building.

The lower photo is an open manhole on the north side of the building.

In both these cases, grates will be placed and secured over these open areas.
This photo shows the SWDD at the time of construction in 1942. The 30-in outfall pipe line was built to cross over this ditch as it traversed from the WWTP to the Niagara River.

The lower photo shows the 30-in outfall as it intersects the SWDD. This is the portion of the line that will be cut and capped.

Note that it is a little difficult to see the 30-in outfall in this picture. What you see in the foreground that looks like lightning or a cracked camera lens is actually tree branches. In the background running perpendicular to the picture, is the 30-in outfall. Also in the background underneath the pipeline you can see the water at the bottom of the SWDD.
Finally, this slide represents the Corps’ portion of the project beginning with a work plan submittal this December, followed by mobilization in the spring and final site restoration in the summer.

This concludes my portion of the presentation. At this time I would like to take questions from the audience.

Thank you, I will now be followed by Jim Stachowski who will present an update on the Lew-Port and Oxy sampling effort this past August.
Good evening, my name is Jim Stachowski, I am the Project Engineer for the former Lake Ontario Ordnance Works site. The Corps, working in conjunction with the Lewiston-Porter (Lew-Port) School Board and their environmental consultant, Dr. Joseph Gardella, developed an investigation program, within our authority, to evaluate potential impacts on the school property from former activities of the Department of Defense (DoD), Manhattan Engineer District (MED), and the Atomic Energy Commission (AEC). The Corps also developed a sampling and analysis plan to determine the extent of potential DoD contamination on property owned by Occidental Chemical Corporation that is within the former LOOW site. I am here to present preliminary results from these investigations.

The figure on this slide shows the former LOOW Site (in green), the Lew-Port Schools property, the Occidental property, and the Niagara Falls Storage Site (NFSS). The Lew-Port Schools campus is located within a portion of the former LOOW that was not developed by the DoD. The school property is shown along Creek Road on the west side of the former LOOW. The Occidental property is located south of Balmer Road and immediately west of former LOOW facilities that were associated with TNT production and wastewater treatment operations.

The Corps is performing investigations for the former LOOW Site under the Defense Environmental Restoration Program (DERP) for Formerly Used Defense Sites (FUDS). The Corps investigations of the NFSS are performed under the Formerly Utilized Sites Remedial Action Program (FUSRAP). FUDS investigates potential chemical impacts from former DoD activities at LOOW and FUSRAP investigates potential radiological impacts from former Manhattan Engineer District (MED) and the Atomic Energy Commission (AEC) activities at the NFSS. The investigation of the Lew-Port Schools property involved both FUDS and FUSRAP programs (i.e. the potential for chemicals and radionuclides attributed to DoD, MED, and AEC activities was investigated). The investigation at the Occidental property involved the FUDS program (i.e. the potential for chemicals attributed to DoD was investigated).
The investigated area of the Lew-Port Schools property is outlined in yellow on the figure. The school campus and Creek Road are located on the western portion of the figure. The orange line that bisects the figure from southeast to northwest is the Southwest Drainage Ditch (SWDD) as it flows north to Four Mile Creek. A 30-inch diameter outfall pipe associated with a former wastewater treatment plant on the LOOW is shown as an orange colored line that extends from east to west.

The investigation evaluated the potential for chemicals and radionuclides on the undeveloped portion of the school property. Three general areas were investigated: 1) soil disturbances that were identified from historical aerial photos, 2) the southwest drainage ditch, and 3) a soil mound near the school campus and west of the SWDD. The scope of the investigation was presented by the Corps to the School Board on June 15th and to the public on June 23rd.

Field work was performed between August 23 to 27. The green circles shown on the figure represent 11 areas where previous soil disturbances were investigated. These disturbances consisted of mounds, a trench, and a pit. The blue squares represent 6 sampling locations within the SWDD that were located between the north (downstream) and south (upstream) property boundaries. The orange circle represents a mound east of the school campus where elevated radioactivity was previously identified from a gamma walkover survey at the school.

The undeveloped portion of the school property is overgrown with brush and trees and a global positioning system (GPS) was used to locate all soil disturbances in the field. Each location east of the SWDD was accessed via the Occidental property from the east. One soil disturbance at the north end of the campus, west of the SWDD, was accessed via the campus. All SWDD sample locations were located with a GPS and accessed from the east. The mound was accessed from the school campus.
Nine areas that contained soil disturbances previously identified were investigated.

Depending on the size of the disturbance, one to four soil borings were drilled to undisturbed soil or to a depth of four feet, whichever was greater. The soil borings were drilled using a mechanical rig and continuous soil samples were collected.

All soil samples were inspected for evidence of potential environmental impacts including: staining, discoloration, and odors. The samples were screened for volatile organic compounds (VOCs) and field test kits were used to determine if explosive residues were present. The samples were also screened for radioactivity for worker health and safety.

Surface and subsurface soil samples from each location were submitted for laboratory analysis for chemicals (VOCs, semi-volatile organic compounds [SVOCs], PCBs, explosives, and metals, including lithium and boron).
This photograph shows the drill rig that was used to collect soil samples from the Lew-Port Schools property. The rig uses a pneumatic hammer to advance a four-foot long soil core sampler. The equipment is mounted on a rubber tire tractor.
This photograph shows soil samples being collected from a mound located adjacent to the intersection of the 30-inch outfall line and SWDD. Core samples were taken from four locations on the mound. At each location, the cores were collected continuously until undisturbed soil was encountered.
Six locations within the SWDD were sampled. Sampling started at the furthest downstream location (north) and proceeded upstream. This was done to prevent possible contamination of downstream locations that might have occurred while sampling. Field screening was performed for VOCs, explosives, and radioactivity consistent with the investigation of soil disturbances.

Water, sediment, and soil samples were collected manually at each location in the following order: 1) water, 2) sediment, and 3) soil. This procedure was followed to prevent possible contamination of overlying media that might have occurred while sampling. Field measurements were taken from the water samples for temperature, pH, conductivity, dissolved oxygen, turbidity, and oxidation reduction potential. All water, sediment, and soil samples were submitted to a laboratory for analysis of VOCs, SVOCs, explosives, PCBs, metals (including boron and lithium) and radiological parameters (gross alpha/beta radiation, gamma spectroscopy, radium -226 and -228, isotopic uranium, isotopic plutonium, isotopic thorium and strontium-90).
This photograph shows the southwest drainage ditch upstream sample location at the southern boundary of the Lew-Port Schools property (view north).
This photograph shows soil samples being collected from the SWDD. A manual hand auger was used. The soil samples were collected after the water and sediment sampling was completed.
A mound located east of the school campus was investigated. This feature was previously surveyed in 2001 as part of a site-wide remedial investigation (RI) of the LOOW. During this period, a gamma walkover survey was performed on the Lew-Port School campus to establish background values. In 2001, elevated gamma survey measurements were recorded from the mound (up to 38,200 counts per minute [cpm]), which was attributed to natural radioactivity of rocks within the fill material.

The recent Corps investigation was performed to verify the previous results. The investigation consisted of a radiological survey of the mound, advancement of two hand auger borings to the base of the mound, vertical radiological profiles of the mound through each auger hole, and collection of soil and rock samples for laboratory analysis of radiological parameters (gross alpha/beta radiation, gamma spectroscopy, radium-226 and -228, isotopic uranium, isotopic plutonium, isotopic thorium and strontium-90).
This photograph shows the mound east of the school campus.
Field observations and field screening results from the soil disturbances did not identify elevated levels of chemicals or radionuclides. All explosives field test results were negative. All VOC and radiological screening measurements were within background levels. All recovered soil samples consisted of native materials, either topsoil or clay. Validated laboratory analytical results are expected by early 2011.

Field observations and field screening results from the SWDD did not identify elevated levels of chemicals or radionuclides. All explosives field test results were negative. All VOC and radiological screening measurements were within background levels. Water quality measurements taken in the field were within expected ranges. All recovered sediment and soil samples consisted of native materials, either organic sediment (muck, silt, and sand) or clay soil. Validated laboratory analytical results expected by early 2011.
The measured dimensions of the mound are approximately 20 feet by 30 feet and 2 to 4 feet high. Two hand auger borings were advanced at areas where the highest gamma survey readings were recorded. The auger holes were terminated in native soil at depths of 2½ and 4 feet. The materials encountered consisted of clay, silt and gravel soils and assorted cobble-sized rocks.

Background gamma survey measurements were approximately 8,750 cpm. On average, the gamma survey readings of the mound were 2 to 3 times above background. However, there were two small areas found to be approximately five times above background. All elevated readings were localized to the mound in question and drop off to background in all directions two to three feet away from the mound. This mound is located in a densely wooded area that tends to preclude access by the general public.

Down-hole gamma surveys through the auger holes produced the highest readings at approximately 1 foot below surface. Several rocks within the fill were removed and surveyed for gamma activity. Measurements taken from individual rocks and several rocks placed in a plastic bag were approximately three times above background (approximately 29,500 cpm). We also scanned a bag of soil that was taken from the mound with results in background range. Our field screening results support the previous 2001 survey. However, we are still awaiting our final validated laboratory results for soil and rock samples, which are expected by early 2011 to support this finding.
This photograph shows the background gamma reference area radiation measurement of approximately 8,750 cpm.
This photograph shows a surface gamma measurement (approximately 32,500 cpm) from the mound.
This photograph shows a hand auger sample from the mound east of the school campus.
This photograph shows an auger hole in the mound east of the school campus. The soil at this location is predominately fine textured.
This photograph shows a down-hole gamma measurement (approximately 58,500 cpm) at the mound.
Lew-Port Property Investigation
Preliminary Results

Rock from mound

This photograph shows a rock from the mound.
This photograph shows a gamma measurement (approximately 18,300 cpm) of the rock shown on the previous slide.
This photograph shows a gamma measurement (approximately 33,900 cpm) of a rock at the surface of the mound.
This photograph shows a gamma measurement (approximately 29,300 cpm) of bagged rocks from the soil mound east of the school campus.
This figure shows the Occidental property, which is a 304-acre parcel located within the former LOOW. Historic aerial photographs indicate that an area in the southwest section of the property was fenced and appeared to have been used during DoD occupancy. The area is approximately 500 feet by 400 feet and is shown in gray on the figure.

The Occidental property was characterized by the Corps during a phase II RI conducted in 2001. Fill material and drum remnants were observed in the former fenced area and samples of soil and solidified waste were collected. Polycyclic aromatic hydrocarbons (PAHs), which are SVOCs, and explosive residues (2,4,6-trinitrotoluene and 2,6-dinitrotoluene) were detected in a surface soil sample at concentrations that exceeded screening criteria. Metals were also detected in a fill sample at concentrations that exceeded background levels.

The recent investigation was performed to determine the extent of explosives residues contamination and to evaluate chromium that was previously detected.
This figure shows the investigated area on the Occidental property. Previous sample locations from the Phase II RI are also shown. The area enclosed in yellow represents the location where PAHs and explosive residues were encountered above the screening criteria.

A systematic grid was established around the former “hotspot” that was spaced at 5, 10, and 20-foot intervals. Field screening of surface soils was performed at each grid node for VOCs, explosives, and radioactivity (for worker health and safety). Surface and subsurface soil samples were collected from 16 locations for a total of 32 samples. The samples were analyzed for VOCs, SVOCs, explosives, PCBs, metals (including lithium and boron), and hexavalent chromium. Analysis for radionuclides was performed if radiological screening results were greater than twice the background value.
Field observations and soil sampling verified that prior disposal activities occurred in this area. Fill consisting of bottles, metal debris, terra-cotta pipe, incendary gasoline igniter caps, rubber tires, rusted drums, slag-like material, and other solidified residues was encountered. The fill is present in discontinuous mounds that are approximately 2 to 3 feet above the native soils. No evidence of excavation and buried material was encountered and it appears that the fill was placed directly on the ground.

All VOC field screening measurements were within background levels and all explosive field tests were negative. One radiological field screening measurement greater that twice the background value was obtained. A soil sample was collected from this location for analysis of radionuclides. Native soil beneath the fill consisted of clay. Validated laboratory analytical results are expected by early 2011.
• Good Evening, my name is John Busse and I am the Program Manager for the former Lake Ontario Ordnance Works/Niagara Falls Storage Site.

• The purpose of this presentation is to provide an update on the progress and current schedule of the Building 401 demolition project.
Work Plan Preparation

- Work Plans were completed and finalized on August 20, 2010 and posted to our website for stakeholder review. The New York State Department of Environmental Conservation provided comments on the work plans and their input was incorporated into the plans in early September.
- No other stakeholder comments were received.

Mobilization

- Mobilization was completed during the week of October 4, 2010.
- Heavy equipment, office and decontamination trailers were brought on site.
- All workers were required to receive safety and health training prior to starting work.
Background Radiological Survey

- Background study included the building materials that were not-impacted and included sheet metal, poured concrete, and concrete block.
- The areas were selected using the historic surveys as guidance for locations where no activity was detected. Suitable background locations were located such that the material is representative but unaffected by radioactive contamination.
- Instruments are held in place for one-minute static measurements during the background study.
- For each material four separate areas were selected and within each area ten measurements of each were obtained at locations not impacted by radioactivity within the area. This established a data set of independent measurements for each material and each type of measurement.
- The background study results were summarized and issued in a letter to the New York State Department of Environmental Conservation (NYSDEC) from our contractor on October 15, 2010. These results will be used as a decision tool to compare survey data with background. Material found to be above the background will be segregated from waste scheduled for disposition in New York State, managed as radioactive material, and disposed of at Energy Solutions’ facility in Clive, Utah. On October 28, 2010, NYSDEC issued acceptance of the background study results and approval to begin disposition of non-hazardous materials within New York State.

Exterior Radiological Survey

- The exterior radiological survey was completed for the accessible exterior areas.
- The only portion of the exterior with radioactivity above background was detected on a window sill on the west side of the building.

Interior Radiological Survey

- Interior survey is approximately 55% complete with the first floor is complete; and, 4 rooms and the entire south wall complete on the second floor.
- Elevated radiological survey measurements have been detected.
- The Corps performs daily quality assurance surveys and oversees all work being done by our contractor.
- NYSDEC also performs periodic quality assurance surveys to verify our contractor’s results.

Exterior Radiological Survey

- The only portion of the exterior with radioactivity above background was detected on a window sill on the west side of the building.

Interior Radiological Survey

- Interior survey is approximately 55% complete with the first floor is complete; and, 4 rooms and the entire south wall complete on the second floor.
- Elevated radiological survey measurements have been detected.
- The Corps performs daily quality assurance surveys and oversees all work being done by our contractor.
- NYSDEC also performs periodic quality assurance surveys to verify our contractor’s results.
Asbestos Survey
- An asbestos survey was completed for the interior and exterior of the building. Confirmation of asbestos containing material was made through sampling and analysis.
- Asbestos containing material was identified on the transite sidings, window glaze, window caulk, flashing and drywall compound, and pipe insulation.

Asbestos Abatement
- Pictures on this slide show Asbestos Abatement activities.
- Transite abatement was completed on the north and east side of the building on the low bays.
- All high bay areas and windows/flashing/drywall compound abatement are scheduled for completion by November 12, 2010.
Concrete Silo Demolition

- The pictures above show the initial and final stages of the concrete silo demolition.
- Concrete silo demolition was initiated on October 4th and completed on October 19, 2010.
- The exteriors of the silos were scanned for presence of radiological impacts and none were detected.
- The silo debris was scanned for the presence of radiological impacts and none were detected.
- Dust suppression was used during the silo demolition with pictures presented on the next slide.
- Particulate dust monitoring show particulate concentrations below the permissible exposure limits set by OSHA.
- Daily radiological air sampling is being conducted and there has been no detectable activity.
Concrete Silo Demolition - Dust Suppression
The current schedule for the dismantlement of Building 401 is listed on this slide.

Notes:
- Concrete Silos were demolished ahead of schedule.
- Structural demolition has been initiated on the low bay at the northeast corner of the building as radiological scanning and asbestos abatement has been completed in this portion of the building; this is also ahead of schedule. This will allow transite asbestos abatement to occur on the north and east sides of the high bay.
• Thank you for your input regarding Building 401.
• Our next topic for tonight is technical facilitation. The information we receive from you tonight will help us determine if a technical facilitator is something the community would find beneficial.
• This past summer, we committed to discussing community expectations and options available if the Corps were to establish facilitated technical discussions with interested community members.
• We have received communication from some community members that they are satisfied with Corps’ communications to date.
• There are also some dedicated, knowledgeable community members that want to be involved at a more technical level.
• We value the community’s input and have included a list of questions that accompanies this presentation.
• These questions will be used to solicit community input for the technical facilitation process.
• The Corps would like the community’s input on these questions by the end of this month to keep the process on schedule.
• The next few slides will summarize the proposed scope for the technical facilitator.
The purpose of the facilitation process is to provide a means for the community to prioritize and communicate concerns to the Corps.

Based on input received from some in the community, we understand that the facilitator would focus on the NFSS FS.

We are considering having the facilitator available during the public comment period for each NFSS FS technical memorandum. There are currently five technical memoranda planned for the NFSS FS over the next three years.

We recognize the documents that are produced through the environmental decision-making process are technically complex.

The intent of a technical facilitator would be to help the community better understand each document prior to submitting comments.
Additional Scope of Services

- Work with stakeholders to identify, focus, prioritize, and frame issues to establish and maintain ongoing dialog and relationship between community and the Corps
- Support the review process and revisions
- Facilitate presentation and discussions, actively, not passively
- Prepare draft meeting minutes for technically facilitated sessions, circulate for review, revise and distribute
- Be available for verbal/written interaction with interested parties related to the project

- These are the additional tasks that we envision could be addressed by the facilitator
Who Will Participate?

- All meetings will be open to the public
- Technical expertise is not required to participate
- Participants will not be paid
- Corps will participate in facilitated discussions
- Continued Corps public workshops

- Who participates in the process is just as important as the process itself
- Any member of the public can participate
- You will not need technical expertise to participate
- Completion of the Feasibility Study for NFSS will take at least three years
- We plan to continue holding public workshops
• I would like to reiterate that the Corps values the community’s input and would like your responses to the questions in the accompanying handout by the end of this month.

• We will also capture your verbal comments through the transcript prepared from tonight’s meeting and review the handouts received.

• Or, please send us an email or write us a letter